Достижения и современные возможности РСДБ - Современное развитие интерферометрии для исследования космической плазмы

Радиоинтерферометры с угловым разрешением в тысячные доли секунды дуги "заглянули" в самые внутренние области наиболее мощных "радиомаяков" Вселенной -- радиогалактик и квазаров, которые излучают в радиодиапазоне в десятки миллионов раз интенсивнее, чем обычные галактики. Удалось "увидеть", как из ядер галактик и квазаров выбрасываются облака плазмы, измерить скорости их движения, которые оказались близкими к скорости света.

Много интересного было открыто и в нашей Галактике. В окрестностях молодых звезд найдены источники мазерного радиоизлучения (мазер -- аналог оптического лазера, но в радиодиапазоне) в спектральных линиях молекул воды, гидроксила (OH) и метанола (CH3OH). По космическим масштабам источники очень малы -- меньше Солнечной системы. Отдельные яркие пятнышки на радиокартах, полученных интерферометрами, могут быть зародышами планет.

Такие мазеры найдены и в других галактиках. Изменение положений мазерных пятен за несколько лет, наблюдавшееся в соседней галактике M33 в созвездии Треугольника, впервые позволило непосредственно оценить скорость ее вращения и перемещение по небу. Измеренные смещения ничтожны, их скорость во многие тысячи раз меньше видимой для земного наблюдателя скорости улитки, ползущей по поверхности Марса. Такой эксперимент пока находится далеко за пределами возможностей оптической астрономии: заметить собственные движения отдельных объектов на межгалактических расстояниях ей просто не под силу.

Наконец, интерферометрические наблюдения дали новое подтверждение существования сверхмассивных черных дыр. Вокруг ядра активной галактики NGC 4258 были обнаружены сгустки вещества, которые движутся по орбитам радиусом не более трех световых лет, при этом их скорости достигают тысячи километров в секунду. Это означает, что масса центрального тела галактики -- не менее миллиарда масс Солнца, и оно не может быть не чем иным, как черной дырой.

Целый ряд интересных результатов получен методом РСДБ при наблюдениях в Солнечной системе. Начать хотя бы с самой точной на сегодня количественной проверки общей теории относительности. Интерферометр измерил отклонение радиоволн в поле тяготения Солнца с точностью до сотой доли процента. Это на два порядка точнее, чем позволяют оптические наблюдения.

Глобальные радиоинтерферометры также применяются для слежения за движением космических аппаратов, изучающих другие планеты. Первый раз такой эксперимент был проведен в 1985-м, когда советские аппараты "Вега-1" и "-2" сбросили в атмосферу Венеры аэростаты. Наблюдения подтвердили быструю циркуляцию атмосферы планеты со скоростью около 70 м/с, то есть один оборот вокруг планеты за 6 суток.

Аналогичные наблюдения с участием сети из 18 радиотелескопов на разных континентах сопровождали посадку аппарата "Гюйгенс" на спутник Сатурна Титан. С расстояния в 1,2 млрд. км велось слежение за тем, как движется аппарат в атмосфере Титана с точностью до десятка километров! Не слишком широко известно о том, что во время посадки "Гюйгенса" была потеряна практически половина научной информации. Зонд ретранслировал данные через станцию "Кассини", которая доставила его к Сатурну. Для надежности предусматривалось два дублирующихся канала передачи данных. Однако незадолго до посадки было принято решение передавать по ним разную информацию. Но в самый ответственный момент из-за пока еще не выясненного сбоя один из приемников на "Кассини" не включился, и половина снимков пропала. А вместе с ними пропали и данные о скорости ветра в атмосфере Титана, которые передавались как раз по отключившемуся каналу. К счастью, в NASA успели подстраховаться -- спуск "Гюйгенса" наблюдал с Земли глобальный радиоинтерферометр. Это, по-видимому, позволит спасти пропавшие данные о динамике атмосферы Титана.

Похожие статьи




Достижения и современные возможности РСДБ - Современное развитие интерферометрии для исследования космической плазмы

Предыдущая | Следующая