Будущее Вселенной, Процесс расширения Вселенной - Релятивистская космология: прошлое и будущее нашей Вселенной

Процесс расширения Вселенной

Оставляя в стороне спорный вопрос, касающийся образования галактик, посмотрим, что говорят современная теория и данные наблюдений относительно будущего развития Вселенной и ее вероятного конца.

Вне всякого сомнения, именно гравитационное взаимодействие определит дальнейший ход событий. Достаточно ли во Вселенной вещества для того, чтобы силы тяготения в конечном счете остановили процесс расширения и заставили галактики вновь начать падать друг на друга, в результате чего Вселенная закончила бы свое существование в неком "Большом сжатии". Или же наоборот. Вселенная будет расширяться бесконечно?

Процесс расширения Вселенной можно рассматривать, используя уже знакомое нам понятие скорости убегания. Согласно закону всемирного тяготения Ньютона, эффективная гравитационная сила, действующая на частицу, находящуюся внутри пустой сферической оболочки, равна нулю, притяжение, вызываемое разными частями оболочки, взаимно компенсируется. То же имеет место и в общей теории относительности. Следовательно, если выбрать для исследования типичную сферическую область Вселенной, то все остальное можно считать полой толстостенной оболочкой, расположенной вне интересующей нас области, поскольку в силу космологического принципа все направления во Вселенной равноправны, а вещество в ней распределено равномерно. Тогда можно допустить, что на галактику, расположенную у края выбранной нами области, действуют силы притяжения только со стороны вещества, находящегося Внутри выбранной сферы. Если это вещество распределено равномерно, то галактика будет притягиваться к центру сферы так, как если бы там была сосредоточена вся заключенная внутри сферы масса. В своем движении относительно центра сферы эта "пробная" галактика должна вести себя, как снаряд, выпущенный "наружу" из этой точки. Если скорость галактики достаточно велика, т. е. если она превышает скорость убегания, характерную для этой сферической области, то галактика будет продолжать свое движение вечно (открытая вселенная), но если скорость галактики недостаточна, то она в конце концов уменьшится до нуля, после чего галактика начнет двигаться к центру сферы (замкнутая вселенная).

Зная скорость разбегания галактик - она определяется значением постоянной Хаббла, - можно оценить необходимую величину массы, которая должна содержаться в данном объеме пространства, чтобы расширение когда-то прекратилось; иначе говоря, требуется рассчитать среднее значение плотности вещества, которая обеспечила бы существование замкнутой вселенной. Если окажется, что средняя плотность вещества превышает некоторое значение, называемое Критической плотностью, то Вселенная через какое-то время должна перестать расширяться - тогда поле битвы останется за силами тяготения и коллапс вещества Вселенной будет неизбежным.

Принимая НО=55 км/с*Мпс, находим, что значение критической плотности примерно равно 5*10-27 кг/м3, или в среднем примерно 3 атома водорода в 1 м3 - это очень немного! При такой плотности Вселенная должна быть очень большой, а вещество в ней - очень разреженным. Определение средней плотности вещества во Вселенной - одна из важнейших задач современной астрономии.

Другой способ выяснения, открыта или замкнута Вселенная, заключается в непосредственном измерении замедления расширения, т. е. в измерении величины, известной под названием Параметра замедления qО. Производя наблюдения очень удаленных объектов, мы как бы путешествуем во времени в далекое прошлое, когда - если верна теория Большого взрыва - Вселенная расширялась быстрее, чем сейчас. В принципе, производя измерения в очень широком интервале расстояний до галактик и их красных смещений, можно выявить отклонения от закона Хаббла вплоть до самых удаленных звездных систем. Но на практике этот метод не дал, по крайней мере, на сегодняшний день, согласующихся между собой надежных результатов. Здесь остается еще много трудностей, включая проблему правильной оценки расстояний и возможность неизвестных пока процессов эволюции: например, вполне возможно, что в прошлом галактики имели большую светимость, чем сейчас, но вопрос в том, насколько большую? Чтобы определить, является ли наша Вселенная открытой или замкнутой, необходимо исследовать объекты с красным смещением выше 0,5, а это соответствует расстояниям, значительно превышающим те, на которых можно увидеть обычные галактики (положение может изменить космический телескоп, выведенный на орбиту вокруг Земли). Ясно, что в качестве объектов исследования следует взять квазары, но в их природе, эволюции и расстояниях до них слишком много неясного, так что надежность полученных результатов остается пока сомнительной. На сегодняшний день мы располагаем наблюдательными данными, свидетельствующими в пользу как открытой, так и замкнутой модели.

Предпринимались также попытки определять возраст Вселенной разными методами и сравнивать его с хаббловским временем - тем возрастом, который имела бы Вселенная, не будь замедления расширения (около 18 млрд. лет при НО=55 км/с*Мпс). Оценки возраста самых старых звезд в шаровых скоплениях, делавшиеся на основе их химического состава с использованием современных теорий звездной эволюции, дали значения в интервале 8-18 млрд. лет, тогда как метод радиоактивной датировки дает гораздо меньшую цифру - около 6 млрд. лет. В 1978 г. Д. Казанас и Д. Н. Шрамм из Чикагского университета, основываясь на данных своих наблюдений, пришли к выводу, что лучше всего согласующийся с известными фактами возраст Вселенной должен составлять 13,5-15,5 млрд. лет, что соответствует открытой, вечно расширяющейся вселенной.

С другой стороны, в 1977 г. Д. Линден-Белл в Кембридже получил значение НО, примерно равное 110 км/с*Мпс, основываясь при этом на своей модели, разработанной для объяснения кажущегося разбегания со сверхсветовыми скоростями радиокомпонентов некоторых квазаров. Это значение НО, если оно, конечно, верно, должно означать, что определяемый из закона Хаббла возраст Вселенной составляет всего 9 млрд. лет, а эта величина находится на грани противоречия с возрастом, наиболее старых из известных звезд.

30 июня 2005 г - в журнале Nature появилось письмо, содержащее новое определение возраста Вселенной на основе возраста изотопов. 238U и 232Th, которые оба радиоактивны с периодами полураспада 4.468 и 14.05 миллиардов лет, однако уран мало распространен в Солнечной системе по сравнению с ожидаемым соотношением выхода при взрывах сверхновых. Это не удивительно, поскольку 238U имеет короткий период полураспада, и величина этого различия дает оценку возраста Вселенной. Однако соотношение производства из моделей ядерной физики точно не известно, поэтому [Dauphas (2005, Nature, 435, 1203)] комбинирует отношение 238U:232Th в солнечной системе с отношением, наблюдавшимся для очень старых, с небольшим содержанием металлов звезд, чтобы решить систему совместных уравнений как для соотношения производства, так и для возраста Вселенной, получая результат 14.5+2.8-2.2 млрд. лет [цитата из архива Новости Космологии].

Если принять во внимание замедление скорости разбегания галактик (т. е. расширения Вселенной), то возникает существенная проблема, как "увязать" этот возраст с простейшей моделью Большого взрыва. В результатах, опубликованных Д. Хэйнсом в 1979 г. в Кембридже, хаббловский возраст Вселенной оценивается в 13 млрд. лет, а в том же году М. Ааронсом в Стьюартской обсерватории, Дж. Хучра в Гарвардском университете и Дж. Моулд в Национальной обсерватории Кит-Пик опубликовали результаты, основанные на измерении светимости галактик в инфракрасном диапазоне, которые указывают на возраст Вселенной около 10 млрд. лет (НО=100 км/с*Мпс).

Еще позднее, в 1980 г., Ж. М. Люк, Ж. Л. Бирк и Ш. Ж. Альянд из Парижского университета опубликовали результаты анализа найденного в метеоритах радиоактивного элемента рения, который имеет очень большой период полураспада (половина любого количества этого элемента распадается, превращаясь в осмий, в течение 60 млрд. лет). Сравнивая количества рения и осмия в веществе метеоритов и считая при этом, что рений образовался при взрывах сверхновых на раннем этапе эволюции Вселенной, эти ученые установили, что возраст Вселенной, по-видимому, составляет от 13 до 22 млрд. лет.

Итак, хотя сегодня большинство астрономов и сходятся во мнении, что значение НО должно соответствовать возрасту Вселенной, равному примерно 18 млрд. лет, в этом вопросе по-прежнему имеются большие расхождения, и до сих пор не представляется возможным сравнить возраст Вселенной, следующий из закона Хаббла, с возрастом отдельных составных частей Вселенной, чтобы таким образом оценить степень замедления расширения Вселенной.

Так величина, полученная Хабблом эквивалентна примерно 2 млрд. лет. Поскольку эта величина должна быть близка к Возрасту Вселенной, а мы знаем (и это было известно в 1929 году) что возраст Земли превышает 2 миллиарда лет, то величина Хаббла для HO вызвала значительный скепсис по поводу космологической модели, и явилась основанием модели Стационарной Вселенной. Однако более поздними работами было показано, что Хаббл спутал два разных вида звезд переменных Цефеид, использованных в целях калибровки расстояний, а также оказалось, что то, что Хаббл считал яркими звездами в удаленных галактиках, на самом деле было H II regions. Исправление этих ошибок привело к снижению величины постоянной Хаббла: сегодня имеются две группы ученых, использующих Цефеиды: HST Distance Scale Key Project команда (Freedman, Kennicutt, Mould с соавт.), которые дают величину 72 ± 8 км/сек/МПс, тогда как команда Sandage, также использующая HST наблюдения Цефеид для калибровки сверхновых типа Ia, дает 57 ± 4 км/сек/МПс. другие методы определения шкалы расстояний включают задержки времени в гравитационных линзах и эффект Сюняева-Зельдовича в удаленных скоплениях: оба измерения независимы от калибровки по Цефеидам и дают значения, согласующиеся со средним их двух величин, сообщенных HST группами: 65 ± 8 км/сек/МПс. Эти результаты соответствуют комбинации результатов измерения анизотропии CMB и ускоряющемуся расширению Вселенной, что дает 71 ± 3.5 км/сек/МПс. При таком значении HO, "возраст" 1/HO равен 14 млрд. лет, тогда как действительный возраст, определенный в соответствии с подходящей моделью, равен 13.7 ± 0.2 млрд. лет. [11]

Если наша Вселенная будет неограниченно расширяться - а об этом свидетельствуют почти все данные наблюдений, - то что ее ожидает в будущем? По мере расширения пространства материя становится все более разреженной, галактики и скопления все более удаляются друг от друга, а температура фонового излучения неуклонно приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарных частиц и холодного излучения будут бессмысленно разлетаться в непрерывно разрежающейся пустоте.

Впрочем, черные дыры не останутся без работы. Имея на то, достаточно времени, черные дыры поглотят огромное количество вещества Вселенной. Если теория Хокинга верна, то черные дыры будут испускать излучение, но черным дырам с массой Солнца потребуется очень длительное время, прежде чем это что-то заметно изменит. Фоновое излучение остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они будут поглощать из этого фонового излучения. Такой момент наступит только тогда, когда возраст Вселенной станет примерно в 10 000 000 раз больше предполагаемого на сегодня. Должно пройти около 1066 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.

Дж. Б. Берроу из Оксфордского университета и Ф. Типлер из Калифорнийского университета нарисовали такую картину отдаленного будущего неограниченно расширяющейся вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии, чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания; предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение, и общее расширение Вселенной как целого; поэтому за конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадией существования материи окажутся не разлетающиеся холодные темные тела или черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.

Второе начало термодинамики предсказывает, что конец Эволюции Вселенной наступит, когда выровняется температура ее вещества - так как тепло передается от более теплых тел к более холодным, различие их температур со временем сглаживается, и совершение работы становится невозможным. Эта мысль о "тепловой смерти" Вселенной была высказана еще в 1854 г. Германом Гельмгольцем (1821-1894). Современное представление о неограниченно расширяющейся Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и термодинамикой, по существу, привело, только более сложным путем, к выводам, сделанным Гельмгольцем.

Мы не знаем с определенностью, каков должен быть исход противоборства расширения Вселенной и гравитационного притяжения ее вещества. Если победит тяготение, Вселенная когда-нибудь сколлапсирует в процессе Большого сжатия, которое может оказаться либо концом ее существования, либо прелюдией к новому циклу расширения. Если же силы тяготения проиграют сражение, то расширение будет продолжаться неограниченно долго, но, тем не менее, гравитация будет играть существенную роль в определении окончательного состояния вещества Вселенной: станет ли оно безбрежным морем однородного излучения или же будет рассеиваться множеством темных холодных масс. В неясном далеком будущем прошедшая эпоха звездной активности может показаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.

Так неужели, же Вселенная обречена на вечное расширение? Пока все данные говорят именно об этом, хотя неприятно думать о превращении нашего удивительного и сложного мира в бесформенную темную пустоту. По-видимому, многим была бы больше по душе пульсирующая модель, дающая надежду на возрождение пусть не живых существ, но, по крайней мере, таких привычных для нас вещей, как вещество и излучение. Однако, что бы мы ни предпринимали, это не изменит ни плотности космического вещества, ни судьбы космоса - нам остается принимать его таким, каков он есть.

Вернемся к 20-м годам прошлого века. Революционную теорию относительности Эйнштейна сразу же принял математик Александр Александрович Фридман, который принадлежал к Петербургской математической школе и был тогда директором Санкт-Петербургской геофизической обсерватории. Он понял, что в уравнениях Эйнштейна нет места для стационарной Вселенной, и в своих работах показал неизбежность ее расширения. Более того, Фридман был первым, кто высказал мысль о том, что когда-то Вселенная могла быть сжатой до невообразимо высокой плотности. Но следует отметить, что в его время о существовании других галактик ничего не было известно. Он писал: "Возможны случаи, когда Вселенная сжимается в точку (ни во что), затем снова из точки доводит радиус свой до некоторого значения..." Эйнштейн поначалу не понял работ Фридмана и даже выступил в печати с их критикой. Было это в 1922 году. Но через год опубликовал новую статью в том же журнале, в которой писал, что Фридман прав.

Из области наблюдательной астрофизики к Эйнштейну тоже приходили захватывающие новости. Еще в 1912 году астроном Весто Слайфер из Флагстафской обсерватории в Аризоне (США), наблюдая спектры некоторых странных туманностей, обнаружил, что линии в их спектрах сильно смещены в "красную" сторону. Позже это явление было названо красным смещением. (Красное смещение - это эффект Доплера, то же, что резкое понижение тона сигнала автомобиля или шума самолета, когда они пронеслись и удаляются от вас.) Свои результаты Слайфер опубликовал в 1917 году. Тогда не было известно, что "странные" туманности - далекие гигантские острова звезд, другие галактики, подобные нашей. Более того, о существовании иных галактик вообще никто ничего не подозревал. Галактика потрясала своими размерами, а с ней отождествлялась и вся Вселенная. Как ни вспомнить, что и Землю когда-то воспринимали плоской, той, что в пределах горизонта. Слайфер продолжал свои наблюдения много лет. Затем к нему присоединился Эдвин Хаббл: в его распоряжении был самый большой тогда 2,5-метровый телескоп обсерватории Маунт Вилсон в Калифорнии (США). В 1927-1929 годах Хаббл пришел к выводу, что красное смещение - это следствие взаимного удаления галактик. Оставался всего один шаг, чтобы понять, что Вселенная расширяется, как и предсказывал Фридман. (Следует отметить, что другое фундаментальное свойство Вселенной - существование реликтового излучения, которое предсказал в 1948 году ученик Фридмана - Георгий (Джордж) Гамов) Хаббл обнаружил, что, чем дальше находятся галактики, тем с большей скоростью они удаляются. Оказалось, что скорость удаления галактики просто определяется умножением расстояния до нее на некоторую постоянную, которая и получила название постоянной Хаббла.

У постоянной Хаббла странная размерность: единиц чего-то в секунду. Скорости разбегания галактик получаются огромными, до сотен тысяч километров в секунду, а где-то приближаются к скорости света. Исследователи быстро сообразили, что на определенном расстоянии галактики просто перестанут быть видны - именно там, где скорость их удаления компенсирует скорость света. Это расстояние - горизонт Вселенной. Из совсем современных данных (в том числе о постоянной Хаббла) получается, что горизонт отстоит от нас на 13,7 миллиарда... Чего? Расстояние в астрофизике измеряют в световых годах, то есть временем, которое требуется свету, чтобы его преодолеть (или в парсеках, что составляет 3,26 светового года). В километрах один световой год выражается единицей с 13-ю нулями, или 10-ю триллионами (то есть миллионами миллионов) километров. А 13,7 миллиарда лет потребовалось бы для того, чтобы свет от звезд такой воображаемой галактики на горизонте Вселенной дошел до нас; это расстояние и составляет 13,7 миллиарда световых лет. И звезд, и этих далеких галактик давно уже нет, но их свет все еще несется к нам. Интересно, что хотя во времена Фридмана постоянная Хаббла еще не существовала, но из совсем других соображений он оценил расстояние до горизонта Вселенной в 10 миллиардов световых лет.

Если для простоты считать, что время во всей Вселенной течет одинаково, легко понять, что соседей наших (то есть близкие галактики) мы видим почти такими же, в том же возрасте, как они есть. Но галактика, удаленная от нас на расстояние миллиона световых лет, видится на миллион лет моложе, чем она есть сейчас. Миллион световых лет - это по небесным меркам сущие пустяки. Астрономы наблюдают галактики на расстоянии в миллиарды световых лет и больше. Соответственно, они видятся уже на миллиарды лет моложе. Таким образом, выбор расстояния - это одновременно и выбор возраста исследуемого объекта, разрез Вселенной во времени. Чем дальше вы смотрите, тем более давние события видите, тем моложе там Вселенная. Почти вплоть до ее рождения. До точки, из которой в один миг и сразу во всей Вселенной началось разбегание материи. Первым в 50-х годах о природе этой точки задумался уже упоминавшийся Георгий Гамов. Другой известный астрофизик, Фред Хойл, назвал начало разбегания Большим взрывом. Название прижилось.

Но вернемся к разбеганию Вселенной. Получается, что 13,7 миллиарда лет назад (не световых, а обыкновенных лет времени) вся она находилась в некой таинственной точке. Эту таинственную точку физики называют сингулярностью. В сингулярности по неизвестным нам причинам возник немыслимый взрыв, выбросивший все вещество Вселенной в разные стороны с такой скоростью, что оно до сих пор летит и не может остановиться. Что, кстати, заслуживает особого внимания. Снаряд, выброшенный вверх, замедляет свой полет и начинает падать, когда его кинетическая энергия израсходована на преодоление земного притяжения (и неизбежных потерь). Замедление ракеты компенсируется расходом топлива, необходимым, чтобы вырваться из поля тяготения Земли и Солнца. В разбегании галактик, как и у снаряда, расходуется их кинетическая энергия, поэтому скорость движения после "выстрела" постепенно должна замедляться. Но с "выстрелом" у астрофизики начинаются большие трудности, причем связаны они не только с материей Вселенной, но и временем. Многие (но не все) космологи считают, что в этой таинственной точке возникла не только материя, но и время Вселенной; раньше ни время, ни пространство не существовали. Вопрос о возникновении времени тоже не вчера возник. В V веке на вопрос "Что Бог делал прежде сотворения мира?" Блаженный Августин предлагал радикальный ответ: "Время - само творение Бога. Никакого прежде не было".

Постоянная Хаббла - прекрасный инструмент. Фактически, если найдены красные смещения, расстояния уже можно считать известными - через постоянную Хаббла. Естественно, не сразу все устроилось. Здесь надо сказать, как во времена Слайфера - Хаббла определялись сами расстояния. Астрофизики обнаружили, что среди различных типов ярких звезд выделяются довольно многочисленные звезды-цефеиды, яркость которых периодически изменяется, причем период колебаний яркости прямо связан со средней яркостью звезды. Как у любого источника света, видимая яркость звезды тем меньше, чем звезда дальше. Зависимость квадратичная, в 2 раза дальше - в 4 раза слабее свет. Таково фундаментальное свойство геометрии нашего мира. Измеряя период колебаний цефеиды, из квадратичной зависимости легко получить расстояние. Цефеиды стали для астрономов "стандартной свечой". Однако за пределами Галактики цефеиды уже неудобны: их яркости не хватает, да и выделить их на сливающемся фоне звезд не удается, а в чуть более далеких галактиках это вообще невозможно. Приходится исходить не из яркости цефеиды, а из средней яркости всей галактики, но эти яркости различны. Если расстояние удается определить с 20%-ной точностью, то это очень хорошо.

Проблема эта особенно обострилась, когда ученые задались очередным вопросом: а сама постоянная Хаббла вообще-то постоянна? Может быть, рост скорости очень удаленных объектов отличается от линейной зависимости скорость-расстояние вблизи нас и как это проверить? Впрочем, какое это имеет отношение к теории относительности с ее лямбда-членом? Как оказалось, самое непосредственное. Но для проверки понадобились новые, трудно доставшиеся экспериментальные факты. Получить их позволила современная наблюдательная техника наземных и космических обсерваторий. За последние десятилетия ХХ века в оснащении обсерваторий произошел грандиозный перелом: на смену старым инструментам пришли телескопы с многометровыми зеркалами, а старинные фотопластинки вытеснены новыми электронными приемниками изображений. Если лучшие фотопластинки требовали не менее 30-50 фотонов для получения одной точки на изображении, то ПЗС - приборы с зарядовой связью - отзываются практически на каждый фотон. Но даже с такой чувствительностью и на больших телескопах, в том числе космических, экспозиции растягиваются на многие часы. С фотопластинками наблюдения этих новых объектов исследований вообще невозможны.

Рассмотрим объекты наблюдений. В галактиках иногда, крайне редко, происходят особые звездные катастрофы, которые называются вспышками сверхновых звезд. Сверхновые за всю историю человечества в нашей Галактике наблюдались всего несколько раз. Считается, что в среднем одна вспышка происходит раз в 100 лет. Из-за того, что мы находимся на периферии Галактики, наблюдениям доступны не все вспышки сверхновых. При вспышке сверхновая звезда светит как целый миллиард солнц одновременно - куда там цефеидам! При такой яркости звезда несколько дней светит как целая галактика, "сгорает" за месяц, но дает важные для науки результаты - ведь ее можно обнаружить приборами на расстоянии в несколько миллиардов световых лет. Именно сверхновые были выбраны как новая стандартная космическая свеча для зондирования космоса. Из сравнения определений расстояний по яркости (астрономы говорят - по "блеску") сверхновой и - независимо - по красному смещению удалось проследить, насколько линейной оказалась зависимость скорость-расстояние, то есть постоянная Хаббла. Из различных типов сверхновых был выбран класс Ia как наиболее однородный по характеристикам яркости. Звезды, которые могут стать сверхновыми класса Ia, - это белые карликовые звезды с массой до 1,4 массы Солнца, отсветившие свое, сжавшиеся до размеров Земли, с огромной плотностью, около 1 тонны в кубическом сантиметре. Несмотря на редкость явления, высокая чувствительность новых электронных приемников позволила наблюдать вспышки сверхновых звезд в других галактиках. В галактике NGC 6946 за несколько десятков лет удалось зарегистрировать целых семь сверхновых. В среднем, наблюдая 100 галактик, можно встретить одну вспышку в год. Дальнейший прогресс приборов позволил увидеть такие далекие галактики и в них вспышки, что в целом стала регистрироваться сначала одна вспышка в месяц, а затем и по одной в неделю. Обработка этих крайне трудных измерений снова, в который раз, показала, что Вселенная гораздо сложнее наших о ней представлений.

25 апреля 2001 г - [Goldhaber С соавт. (2001, ApJ в печати)] проанализировали результаты наблюдений 60 сверхновых с различной величиной красных смещений и пришли к выводу, что ширина или длительность кривой яркости пропорциональна (1+z), где Z есть красное смещение. Это именно то что предсказывалось в моделях расширяющейся Вселенной [цитата из архива раздела Новости Космологии].

Похожие статьи




Будущее Вселенной, Процесс расширения Вселенной - Релятивистская космология: прошлое и будущее нашей Вселенной

Предыдущая | Следующая