Воздействие микроклимата на человека


Введение

Микроклимат -- метеорологический режим закрытых помещений (жилищ, лечебных учреждений, производственных цехов). Кроме того, различают микроклимат населенных мест и микроклимат рабочих площадок при работах, проводимых на открытой территории. Микроклимат определяется следующими основными метеорологическими компонентами -- температурой воздуха и окружающих поверхностей, влажностью и скоростью движения воздуха, а также лучистой энергией. Микроклимат помещений различного назначения, несмотря на ограждения, изменяется в соответствии с состоянием внешних атмосферных условий и, следовательно, подвержен колебаниям сезонного характера.

Тепловой обмен человека определяется взаимоотношениями между образованием тепла и отдачей или получением тепла из внешней среды. Изучение теплообмена человека в различных условиях во всем его разнообразии и многогранности позволяет разрабатывать нормы, определять степень приспособления организма и разрабатывать меры защиты против чрезмерного воздействия тепла, холода и лучистой энергии.

Санитарные нормы микроклимата разработаны на основе современных данных физиологии теплообмена и терморегуляции человека, а также достижений санитарной техники. Санитарные нормы для объектов различного назначения обычно разрабатываются для холодного и теплого периодов года, а в ряде случаев и по климатическим зонам. Санитарные нормы делятся на оптимальные (которые часто называют тепловым комфортом) и допускаемые.

Оптимальные нормы применяются для объектов с повышенными требованиями теплового комфорта (театры, клубы, больницы, санатории, детские учреждения). В ряде отраслей промышленности по гигиеническим и технологическим требованиям также необходимы оптимальные условия (радиоэлектронная техника, точное приборостроение).

Микроклимат населенных мест (городов, сел, поселков и т. д.) отличается от климатических условий окружающей местности. Различные здания нагреваются солнцем, высокие здания и улицы изменяют силу ветра; зеленые насаждения создают тень и снижают температуру воздуха. Поэтому изучение климата той или иной местности имеет большое гигиеническое значение для планировки городов и населенных пунктов, а также для проектирования различных систем отопления, вентиляции и кондиционирования воздуха.

Воздействие показателей микроклимата на человека

Параметры микроклимата оказывают существенное влияние на самочувствие, состояние здоровья и работоспособность человека. Отклонение параметров микроклимата приводит к нарушению теплового баланса. Например, понижение температуры окружающего воздуха приводит к увеличению теплоотдачи от организма за счет теплопроводности, конвекции и излучения. Слишком сильное понижение температуры может привести к чрезмерному переохлаждению организма. Понижение температуры и повышение скорости движения воздуха также увеличивает теплоотдачу от организма и может привести к переохлаждению организма за счет возрастания отдачи теплоты конвекцией и при испарении пота.

При переохлаждении организма уменьшается функциональная деятельность органов человека, скорость биохимических процессов, снижается внимание, затормаживается умственная деятельность и, в конечном счете, снижается активность и работоспособность. При повышении температуры тепловыделения человека начинают превышать теплоотдачу, может возникать перегрев организма. Ухудшается самочувствие и падает работоспособность.

Здоровье и работоспособность человека в значительной степени определяются условиями микроклимата и воздушной среды жилых и общественных зданий. Отечественными и зарубежными гигиенистами установлена связь между микроклиматом в жилище и на рабочем месте и состоянием здоровья людей. Обеспечение заданных показателей микроклимата является одной из основных задач специалистов по строительной теплофизике, отоплению, вентиляции и кондиционированию воздуха. За рубежом исследования теплоощущений человека в помещении легли в основу большого числа национальных и международных стандартов на тепловой микроклимат и параметры воздушной среды.

Для промышленных зданий параметры внутреннего воздуха нормируются ГОСТ'ом 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны". Значения параметров воздуха в нем заданы в зависимости от энергозатрат человека (для выделенных категорий работ) для теплого и холодного периодов года на оптимальном и допустимом уровнях. Эти же данные приведены в СНиП 2.04.05-91*. Имеется также относительно недавно принятый на федеральном уровне Госкомсанэпиднадзором России в Государственную систему санитарно-эпидемиологического нормирования Российской Федерации СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений".

В этом документе кроме параметров внутреннего воздуха нормируются также температуры поверхностей и допустимые величины интенсивности теплового облучения рабочих мест от производственных источников. Не обсуждая сейчас достоинств и недостатков СанПиН'а, заметим, что он, по существу, явился первым отечественным нормативным документом, комплексно охватывающим тепловые микроклиматические воздействия на человека.

Для жилых и общественных зданий до недавнего времени не было такого комплексного нормативного документа. Расчетные параметры теплового состояния внутреннего воздуха и его подвижность традиционно приводились в СНиП 2.04.05-91*" Отопление, вентиляция и кондиционирование. "Нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности наружного ограждения, косвенно отражающие радиационную температуру помещения, - в СНиП II-3-79* "Строительная теплотехника". Причем, значения этого перепада только в последней редакции СНиП'а II-3-79* достаточны для обеспечения комфорта человека; ранее они были направлены на исключение выпадения конденсата на внутренней поверхности ограждения. Расчетные температуры внутреннего воздуха для отопления, некоторые другие параметры в различных помещениях общественных зданий, приводятся в СНиП 2.08.02-89* "Общественные здания и сооружения".

Появление ГОСТ'а 30494-96 "Здания жилые и общественные. Параметры микроклимата в помещениях", в котором реализован комплексный подход к нормированию показателей микроклимата, несомненно следует считать положительным моментом.

В основу ГОСТ'а были положены принципы сохранения здоровья и работоспособности людей при различных видах деятельности. Гигиенические нормативы отражают современные научные и технические знания, получаемые при изучении реакций человека на воздействие тех или иных факторов окружающей среды. В них учтены современные теплотехнические требования к ограждающим конструкциям зданий и системам отопления и вентиляции.

ГОСТ 30494-96 "Здания жилые и общественные. Параметры микроклимата в помещениях" впервые введен в действие Постановлением N1 Государственного комитета РФ по строительной, архитектурной и жилищно политике от 6 января 1999 года с марта текущего года. Стандарт разработан ГПКНИИ СантехНИИпроект, НИИстройфизики, ЦНИИЭПжилища, ЦНИИЭП учебных зданий, НИИ экологии человека и гигиены окружающей среды им. Сысина, Ассоциацией инженеров АВОК. 11 декабря 1998 года стандарт принят Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС), объединяющей органы Государственного управления строительством стран СНГ.

В соответствии с ГОСТ'ом микроклимат помещения - это состояние внутренней среды помещения, оказывающее воздействие на человека, характеризуемое показателями температуры воздуха и ограждающих конструкций, влажностью и подвижностью воздуха". Стандарт устанавливает параметры микроклимата обслуживаемой зоны помещений жилых, общественных, административных и бытовых зданий. По сравнению с ранее действовавшими нормативами обслуживаемая зона на 0,5 м приближена к наружным ограждениям и нагревательным приборам, что вполне согласуется с повысившимися требованиями к теплозащите наружных ограждений. Расчетные параметры микроклимата нормируются в зависимости от функционального назначения помещения, среди которых стандартом выделяются жилые, детские дошкольные учреждения и 6 категорий помещений общественных зданий, отличающихся интенсивностью деятельности, типом одежды и продолжительностью пребывания в них людей. Такой подход позволил дифференцированно подойти к микроклиматическому нормированию практически для любого общественного здания.

Требуемые параметры микроклимата заданы для теплого и холодного периодов года. Причем в ГОСТ'е границей между этими периодами считается температура наружного воздуха 8С, а в упомянутом выше СанПиН'е - 10 С.

ГОСТ'ом устанавливаются общие требования к оптимальным и допустимым показателям микроклимата и методы их контроля. Оптимальные параметры микроклимата - это "сочетания значений показателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают нормальное тепловое состояние организма при минимальном напряжении механизмов терморегуляции и ощущение теплового комфорта не менее чем у 80 % людей, находящихся в помещении. "К допустимым параметрам микроклимата отнесены такие сочетания показателей, которые при длительном и систематическом воздействии на человека могут вызвать общее и локальное ощущение дискомфорта, ухудшение самочувствия и понижение работоспособности при усиленном напряжении механизмов терморегуляции и не вызывают повреждений или ухудшения состояния здоровья". Диапазон оптимальных параметров уже и находится внутри зоны допустимых, но только допустимые параметры являются обязательными для соблюдения. Этим требованием реализован новый подход к разработке нормативных документов, когда потребительские свойства зданий разрешается улучшать при желании и наличии средств.

Значения оптимальных и допустимых норм микроклимата в обслуживаемой зоне помещений (в установленных расчетных параметрах наружного воздуха) приведены в ГОСТ'е для следующих показателей: температура, скорость движения, относительная влажность воздуха; результирующая температура помещения; локальная асимметрия результирующей температуры.

Оценка температурной обстановки помещений предусматривается по двум температурам - воздуха и результирующей помещения. Результирующая температура является комплексным показателем температуры воздуха и радиационной температуры помещения.

Результирующую температуру можно рассчитать, измерив температуры воздуха и всех поверхностей, обращенных в помещение, а можно измерить шаровым термометром. Первый способ может оказаться трудно выполнимым, так как в стандарте не уточняется, как измерить температуру и площадь поверхности отопительного прибора, особенно если у него оребренная поверхность.

Для исключения отрицательного воздействия на человека одновременного влияния нагретых и охлажденных поверхностей ограничивается локальная асимметрия результирующей температуры помещения, которая определяется как "разность результирующих температур в точке помещения, определенных шаровым термометром для двух противоположных направлений".

Шаровой термометр для определения локальной асимметрии результирующей температуры - это шаровой термометр, у которой одна половина шара имеет зеркальную поверхность (степень черноты поверхности не выше 0,05), а другая - зачерненную (степень черноты - не ниже 0,95).

Установленные стандартом диапазоны параметров ужесточены в сторону комфортных значений по сравнению с приведенными в приложениях 1 и 5 СНиП 2.04.05-91*. Допустимая относительная влажность в холодный период практически в любых помещениях, где она нормируется, не должна превышать 60 %, ранее - 65 %, оптимальная скорость движения воздуха в жилых комнатах в холодный период составляет 0,15 м/с вместо 0,2 м/с по СНиП 2.04.05=91*. Для районов с расчетной температурой наружного воздуха (параметры А) в теплый период 25°С и выше или с расчетной относительной влажностью воздуха (параметры А) более 75 % не делается никаких отступлений от указанных верхних пределов температуры и влажности внутреннего воздуха.

В качестве допустимых условий ГОСТ предусматривает сочетания более низкой температуры воздуха с более высокой результирующей температурой. Например, в нормах оптимальных условий жилых зданий имеется только одна температура - 20oС, принадлежащая диапазонам обеих нормируемых температур. Из-за этого лучистая система отопления, признанная более комфортной для человека по сравнению с радиаторной и конвекторной, не сможет поддержать оптимальные, с точки зрения ГОСТ'а, условия, так как при наличии инфильтрации наружного воздуха температура внутреннего воздуха всегда будет несколько ниже средней радиационной температуры.

Параметры воздушной среды в соответствии со стандартом должны обеспечиваться и контролироваться по всему объему обслуживаемой зоны, для чего в ГОСТ'е установлены места измерения их значений и приводятся допустимые отклонения в различных точках обслуживаемой зоны. По температуре воздуха они ограничены 2°С для оптимальных показателей и 3°С - для допустимых; по относительной влажности - 7 % для оптимальных и 15 % - для допустимых, по скорости движения воздуха - соответственно 0,07 и 0,1 м/с.

При этом в тексте не обошлось без противоречия. С одной стороны, измерение скорости воздуха выполняется в различных точках обслуживаемой зоны и нормируются допустимые диапазоны скорости; с другой, - под скоростью движения воздуха понимается "осредненная по объему обслуживаемой зоны скорость движения воздуха". То же самое можно сказать и об относительной влажности.

Показатели, включающие в себя оценку радиационной температуры, нормируются только для середины помещения. При этом в дополнение к нормативным диапазонам результирующей температуры помещения установлен допустимый разброс этой температуры по высоте помещения не более 2°С для оптимальных показателей и 3°С - для допустимых. Локальная асимметрия результирующей температуры должна быть не более 2,5°С для оптимальных и не более 3,5°С для допустимых показателей. К сожалению именно эти параметры на границе обслуживаемой зоны не измеряются и не нормируются. Кроме того, требования, установленные для локальной асимметрии результирующей температуры, не являются обязательными. Тот факт, что в ГОСТ'е приводится локальная асимметрия не радиационной температуры, а результирующей, по существу допускает локальные асимметрии радиационной температуры в два раза превышающие нормы для результирующей. воздействие микроклимат человек

В ГОСТ'е локальная асимметрия результирующей температуры помещения определяется как разность температур, измеренных в двух противоположных направлениях шаровым термометром с рекомендуемым диаметром сферы 150 мм. Представляется, что более жесткая оценка локальной асимметрии радиационной температуры относительно противоположных сторон плоской элементарной площадки точнее описывает процесс теплообмена неблагоприятно расположенных поверхностей на теле человека, чем относительно полусферы диаметром 15 см. Например, площадки на груди и спине человека могут ощущать одновременное переохлаждение и нагрев. Оценка этого теплоощущения не может выполняться с использованием прибора, интегрирующего сферой температуры всех окружающих поверхностей. Шаровой термометр подходит скорее для оценки радиационной и результирующей температуры в центре помещения и, на мой взгляд, не годится для измерения такой характеристики как асимметрия радиационной и результирующей температуры, которые должны оцениваться на границе обслуживаемой зоны. Расчеты показали, что асимметрии радиационной температуры относительно элементарных площадок и полусфер диаметром 150 мм отличаются друг от друга более чем в четыре раза! Если при нормативных теплозащите (по второму этапу) и размерах окна, например, в районе с расчетной температурой наружного воздуха -28°С асимметрия радиационной температуры на расстоянии 0,5 м от окна относительно полусферы на любой высоте от пола укладывается в 3°С, то относительно вертикальной элементарной площадки в рядовых комнатах при радиаторном, конвекторном и воздушном отоплении на высоте 1,1 м от пола она равна 9,4-9,7°С. То есть, если судить по результатам относительно полусферы, то нормы по асимметрии результирующей температуры помещения, выполняются всегда и с запасом, а если относительно плоской элементарной площадки, то в расчетный период нормы оптимальных условий не выполняются на высоте 1,1 м даже на расстоянии 1 м от окна, нормы допустимых условий на высоте 1,1 м не выполняются только на расстоянии 0,5 м от окна. Хотя, как уже сказано, асимметрия результирующей температуры, не являясь обязательным параметром, нормируется только для середины помещения. Представилось интересным соотнести параметры микроклимата, установленные в ГОСТ'е, с показателями, принятыми в международном стандарте ISO 7730 , в котором реализован предложенный О. Фангером метод оценки комфортности теплового микроклимата помещения. Метод позволяет комплексно учесть радиационную температуру помещения, температуру, влажность и подвижность воздуха, теплопродукцию человека и тепловую изоляцию одежды. В качестве количественных характеристик комфортности тепловых условий по перечисленным факторам рассчитываются показатели PMV - ожидаемого значения теплоощущения и PPD - ожидаемой вероятности неприятного теплоощущения в процентах. Значениям PMV соответствует следующая шкала психофизиологического субъективного теплоощущения:

Теплоощущение

Значение PMV

Холодно

-3

Прохладно

-2

Слегка прохладно

-1

Слегка тепло

+1

Тепло

+2

Жарко

+3

Связь между показателями PMV и PPD устанавливается следующими данными, приведенными в таблице 1.

Таблица 1. Распределение индивидуальных тепловых ощущений (по данным экспериментов с участием 1300 человек) при различных тепловых условиях

Значения

Теплоощуения,

PMV

Вероятность

Неприятного

Ощущения

PPD, %

Процент людей, оценивающих обстановку не хуже чем

Комфорт

Прохладно или тепло

Слегка холодно или слегка жарко

+2

75

5

25

70

+1

25

27

75

95

0

5

55

95

100

-1

25

27

75

95

-2

75

5

25

70

Для случаев, когда показатель PMV лежит между -2 и +2, Фангер предложил формулу, расчет по которой выполнен на ЭВМ. Были вычислены значения PMV и PPD сочетаний оптимальных и допустимых параметров, нормируемых ГОСТ'ом для офисных помещений. Исходные значения принятых параметров и результаты расчета приведены в таблице 2.

Таблица 2

Температура воздуха, oС

Радиационная температура, oС

Относительная влажность, %

Скорость воздуха, м/с

PMV

PPD

%

Оптимальные сочетания параметров

20

20

45

0,20

0,15

5,4

20

20

30

0,20

0,07

5,1

19

17

45

0,20

-0,18

5,6

19

17

30

0,20

-0,25

6,2

21

15

45

0,20

-0,11

5,2

21

15

30

0,20

-0,19

5,7

19

21

45

0,20

0,12

5,2

19

21

30

0,20

0,04

5,0

21

19

45

0,20

0,18

5,6

21

19

30

0,20

0,09

5,1

Допустимые сочетания параметров

18

18

30

0,3

-0,31

8,2

18

18

60

0,3

-0,35

8,7

18

16

30

0,3

-0,74

16,8

18

16

60

0,3

-0,85

19,3

23

15

30

0,3

-1,11

27,5

23

15

60

0,3

-1,15

28,6

23

21

30

0,3

0,44

9,7

23

21

60

0,3

0,55

11,9

Из таблицы видно, что оптимальные сочетания параметров полностью отвечают этому понятию и по ISO 7730. Что касается допустимых сочетаний, то их крайние значения могут приводить к тому, что значительный процент людей будет ощущать дискомфорт.

Список используемой литературы

    1. Губернский Ю. Д., Кореневская Е. И. Гигиенические основы кондиционирования микроклимата жилых и общественных зданий. М.:"Медицина", 1978.-192 с. 2. Банхиди Л. Тепловой микроклимат помещений: расчет комфортных параметров по теплоощущениям человека / Пер. с венг. В. М.Беляева; Под ред. В. И.Прохорова и А. Л.Наумова.-.: Стройиздат, 1981.-248 с. 3. Межгосударственный стандарт. Здания жилые и общественные. Параметры микроклимата в помещениях. ГОСТ 30494-96. Госстрой России, ГУП ЦПП, 1999. 4. Сканави А. Н. Конструирование и расчет систем водяного и воздушного отопления зданий. М.:Стройиздат, 1983.-304 с. 5. П. Н. Умняков, "Основы расчета и прогнозирования теплового комфорта и экологической безопасности на предприятиях текстильной и легкой промышленности", Москва, 2003 год.

Похожие статьи




Воздействие микроклимата на человека

Предыдущая | Следующая