Забойная крепь из армирующих фибергласовых элементов - Строительство тоннелей

За последние 15 лет в Италии была разработана и внедрена новая эффективная технология закрепления неустойчивого грунтового массива перед забоем тоннеля с использованием армирующих фибергласовых элементов [48]. Сущность ее заключается в том, что из забоя строящегося тоннеля равномерно по всей его площади забуривают систему горизонтальных и слабо наклонных скважин, в которые помещают фибергласовые элементы различной конструкции и инъецируют стабилизирующий состав (чаще всего цементный раствор) (рис. 26).

технологическая схема закрепления грунтового массива фибергласовыми элементами; 1 - тоннель; 2- буровой агрегат; 3 - фибергласовые армирующие элементы; s - глубина заходки; l - длина зоны армирования

Рис. 26 Технологическая схема закрепления грунтового массива фибергласовыми элементами; 1 - тоннель; 2- буровой агрегат; 3 - фибергласовые армирующие элементы; S - глубина заходки; L - длина зоны армирования

Длина зоны армирования составляет15 - 18 м и более, превышая глубину заходки (1,0 - 1,5) D, где D - диаметр тоннеля. Лбу забоя придают вогнутую форму для реализации арочного эффекта. Через закрепленный таким образом грунтовый массив ведут проходку тоннеля способом сплошного забоя, срезая фибергласовые элементы рабочим органом тоннелепроходческой машины. Из вновь образованного забоя забуривают следующую серию скважин и устанавливают армирующие элементы, обеспечивая перекрытие ранее установленных элементов на 5 - 6 м.

Такая технология используется в связных и малосвязных слабоустойчивых и неустойчивых грунтах естественной влажности с небольшим количеством каменистых включений, что позволяет обеспечить заданное направление скважин. Основным достоинством данной технологии является возможность вести проходку тоннеля практически в любых грунтах способом сплошного забоя с применением высокопроизводительного тоннелепроходческого оборудования.

В зависимости от типа пересекаемого грунта и степени его устойчивости армирование зоны перед забоем тоннеля выполняют без дополнительного крепления или в сочетании с опережающей крепью по контуру выработки. Для усиления забойной зоны применяют опережающую бетонную крепь, выполненную в нарезанной по контуру выработки прорези. Возможно устройство опережающей контурной крепи в виде экрана из труб, из грунта, закрепленного струйной цементацией или из тех же фибергласовых элементов с инъецированием в них стабилизирующего состава.

В настоящее время в практике тоннелестроения применяют различные профили армирующих фибергласовых элементов: гладкие и гофрированные трубчатые, Y-образные и плоские, закрепленные на специальных кондукторах и объединенные с трубками для инъецирования и отвода воздуха (рис. 27).

Основные параметры трубчатых элементов составляют: диаметр 40 - 60 мм, толщина стенки 10 мм, длина15 - 25 м, плотность распределения по плоскости забоя 0,35 - 0,50 ед./м2, перекрытие элементов соседних заходок 5 - 6 м.

Эффективность технологии подтверждается успешным опытом проектирования и строительства многочисленных тоннелей в Италии, Франции, а также базисных Альпийских тоннелей. С 1985 г. В Италии на железнодорожной линии Флоренция - Ареззо было пройдено более 11 км тоннелей. Проходка велась в сложных инженерно-геологических условиях и продемонстрировала надежность фибергласовых элементов и устойчивость армированного грунтового массива.

В 1988 г. были построены шесть тоннелей на скоростной железнодорожной линии Рим - Флоренция. Тоннели условным диаметром 7 и 13 м и длиной от 0,7 до 2,7 км заложены в супесчаных и илистых грунтах на глубине 50 - 90 м от поверхности земли. В четырех тоннелях ограничились армированием зоны перед забоем фибергласовыми трубчатыми элементами длиной 15 м, а в двух тоннелях эту крепь применяли в сочетании с опережающей бетонной крепью.

конструкция армирующих фибергласовых элементов

Рис. 27 Конструкция армирующих фибергласовых элементов: а - поперечные сечения; б - продольный разрез; 1 - трубчатый элемент; 2 - Y-образный элемент; 3 - трубка для инъецирования; 4 - плоский элемент; 5 - кондуктор; 6 - пробка из расширяющегося пластического материала; 7 - трубка для отвода воздуха; 8 - скважина; 9 - фибергласовая трубка

В тоннелях диаметром 7 м устанавливали по 25 элементов, а диаметром 13 м - по 50 - 60 элементов на заходку. При этом плотность распределения армирующих элементов составляла соответственно 0,35 и 0,43 - 0,51 ед./м2. Средняя скорость проходки способом сплошного забоя составляла 50 м/мес.

В 1991 г. был введен в эксплуатацию железнодорожный тоннель Сан Витали на линии Гасерта - Фоджия. Тоннель длиной 2,5 км и диаметром 12,7 м заложен в глинистых грунтах на глубине100 м от поверхности земли. При проходке тоннеля сплошным забоем использовали опережающую крепь из фибергласовых элементов по контуру выработки и фибергласовые элементы трубчатого профиля длиной 18 м в забое. На одну заходку приходилось 50 элементов с плотностью распределения 0,41 ед./м2.

Пятикилометровый тоннель Васто был построен в 1993 г. на железнодорожной линии Анкона - Бари. Проходку вели сплошным забоем в илистых глинах с песчаными линзами на глубине от 8 до135 м от поверхности земли, используя опережающую крепь из грунта, стабилизированного струйной цементацией. Трубчатые фибергласовые элементы длиной 18 м в количестве 55 шт. на одну за ходку располагались с плотностью 0,45ед./м2.

С применением плоских армирующих фибергласовых элементов длиной 25 м был пройден 120-метровыйстанционный тоннель Римского метрополитена в 1997 г. Работы вели в глинах и песчаных илах на сравнительно небольшой глубине (22 м) от поверхности. Раскрытие выработки осуществляли с предварительной проходкой боковых и верхней штолен. Было установлено 47 армирующих элементов с плотностью 0,37 ед./м2.Наряду с креплением грунтового массива перед забоем тоннеля применяли опережающую бетонную крепь. Строительные работы были завершены за 18 месяцев. Осадки поверхности земли зафиксированы не были.

В настоящее время в Италии ведется строительство шести тоннелей общей протяженностью 12 км и трех соединительных камер на железнодорожной линии Генуя - Волтри [49]. Тоннели заложены на глубине до 220 м от поверхности земли в слабоустойчивых полускальных грунтах, представленных серпентиновыми сланцами.

При проходке тоннелей и раскрытии крупнопролетных камер сечением 160,0 - 338,5 м2 широко использовали армирующие фибергласовые элементы длиной 15 м в сочетании с радиальными анкерами типа "Суперсвеллекс" фирмы "Атлас Копко" длиной 6 м и несущей способностью 200 кН, преднапряженными прядевыми анкерами длиной 18 м и несущей способностью 750 кН, а также экранами из труб.

В 1998 г. Завершено строительство железнодорожного тоннеля на скоростной линии TGV Марсель - Лион во Франции [48]. Девятисотметровый тоннель условным диаметром 15 м заложен на глубине 100 м в толще консолидированных глин. Для стабилизации грунтового массива перед забоем тоннеля использовали плоские фибергласовые элементы длиной 24 м. На каждую заходку приходилось 90 элементов; плотность распределения - 0,5 ед./м2,скорость проходки - 1,5 м/сут.

Для установления оптимальных параметров армирующих элементов, работающих совместно с окружающим грунтовым массивом, в Италии проводятся теоретические исследования и расчеты с использованием метода конечных элементов, на основе которого разработаны плоские и пространственные модели. В процессе строительства тоннелей выполняют мониторинг напряженно-деформированного состояния грунтового массива и армирующих элементов, измеряют осадки поверхности земли и конвергенцию контура выработки. По результатам теоретических и экспериментальных исследований устанавливают закономерности взаимодействия армирующих элементов с грунтовым массивом и корректируют основные конструктивно-технологические параметры.

В настоящее время применение армирующих фибергласовых элементов предусмотрено на строительстве крупнейших базисных Альпийских тоннелей: Сен-Готард длиной 57 км, Летчберг длиной 36 км и Зиммерберг длиной 21 км [50, 51].Так, при проходке Летчбергского тоннеля в сжимаемых грунтах было принято решение вести работы сплошным забоем с закреплением массива фибергласовыми трубами длиной 13 - 15 м. Перекрытие элементов составило 3 - 4 м. В тоннеле устанавливают стальную арочную крепь и скальные анкеры.

Применение опережающей крепи из фибергласовых элементов позволяет:

    - вести проходку крупнопролетных выработок способом сплошного забоя в слабоустойчивых и неустойчивых грунтах с применением однотипного высокопроизводительного оборудования, обеспечивая безопасность и высокие темпы работ; - использовать рассматриваемый метод в широком диапазоне инженерно-геологических условий путем варьирования параметрами армирующих элементов (формой поперечного сечения, длиной, перекрытием соседних заходок, плотностью на 1 м2 площади забоя) и выполняя систематический мониторинг напряженно-деформированного состояния грунтового массива; - свести к минимуму сдвижения и деформации грунтового массива и поверхности земли в процессе проходки тоннеля за счет стабилизации грунтового массива в предзабойной зоне; - применять фибергласовые армирующие элементы в сочетании с опережающей крепью из анкеров, экранов из труб, бетонных сводов, грунта, закрепленного струйной цементацией. В настоящее время рядом компаний (H. Weidmann, Durglass FL и др.) разработаны новые высокопрочные сплошные и трубчатые армирующие элементы различной формы из синтетических материалов на основе стекловолокна, обеспечивающие упрочнение грунтов инъецированием и легко разрушающиеся при проходке [52].

Дополнительные затраты на изготовление и установку армирующих элементов окупаются вышеуказанными достоинствами технологии, которую целесообразно использовать в нашей стране при строительстве транспортных тоннелей, метрополитенов и других подземных сооружений в сложных инженерно-геологических условиях.

Похожие статьи




Забойная крепь из армирующих фибергласовых элементов - Строительство тоннелей

Предыдущая | Следующая