Проектирование методов и средств измерений превышений - Геодезический контроль осадок промышленного здания

Основными факторами, влияющими на выбор методов и средств измерений геометрических параметров технических объектов, являются:

характеристика объекта и вид контролируемых геометрических параметров;

требуемая точность контроля параметров;

-методы контроля по полноте охвата, временной характеристике и управляющему воздействию;

характеристика условий измерений; продолжительность процесса измерений;

стоимость средств измерений и контроля в целом;

наличие средств измерений и специалистов.

Основным методом контроля осадок объектов промышленных предприятий является Метод геометрического нивелирования короткими лучами.

Этот метод позволяет охватить очень широкий диапазон точностей измерений превышений (от 0,05 до 5 мм на одну станцию), позволяет вести измерения в широком диапазоне внешних и внутренних воздействий природной и производственной среды, имеет более высокую производительность по сравнению с другими методами и более низкую стоимость работ.

В настоящее время при контроле осадок инженерных объектов используют следующие виды классификаций и методик геометрического нивелирования:

государственное нивелирование I, II, III и IV классов;

разрядное нивелирование для измерения осадок гидротехнических сооружений;

разрядное нивелирование для измерения деформаций оснований зданий и сооружений;

-нивелирование специальных классов для инженерно-геодезических работ.

Классификация и методика государственного нивелирования хорошо приспособлены для ведения геодезических работ на больших территориях, когда реперы расположены на большом удалении друг от друга и необходимо получить их отметки с наименьшими затратами средств и временя при заданной точности измерений на километр хода. В этих случаях стараются работать на предельных длинах визирных лучей, пользоваться для ускорения работ двумя рейками, а измерения вести по башмакам или костылям.

Так как ходы большой протяженности, то методика измерений направлена в значительной мере на уменьшение систематических погрешностей, влияние которых на точность возрастает по мере увеличения длин ходов.

Для наблюдений за осадками зданий сооружений и оборудования промышленных предприятий этот вид классификации и методики измерений мало пригоден из-за недостаточной точности измерения превышений по контролю оборудования, где часто требуются точности выше первого класса, необходимости применения различных по точности приборов, реек и приспособлений при смене классов нивелирования, что создает ряд неудобств при производстве работ в производственных цехах.

Классификация и методика для измерения осадок гидротехнических сооружений хорошо приспособлены для ведения геодезических работ на специфических сооружениях - протяженных плотинах, каналах, шлюзах.

Осадочные марки расположены на бетонных сооружениях через 20 - 40 м, а на земляных сооружениях через 100 - 200 м.

Точность измерений превышений в ходах на бетонных и земляных плотинах существенно различается, что и проявляется в разработанных для этой целя классификации и методике нивелирования. Для контроля осадок и деформаций зданий, сооружений и оборудования в других отраслях промышленности этот вид классификации и методики измерений применяется редко.

Классификация и методика нивелирования для измерения деформаций оснований зданий и сооружений по своим характеристикам близки к государственному нивелированию.

Поэтому, из-за точности измерений превышений на станции, длин визирных лучей и их неравенства и других характеристик, данный вид нивелирования не получил широкого распространения для контроля технического состояния конструкций сооружений и оборудования промышленных предприятий.

Классификация и методика геометрического нивелирования специальных классов разработаны для контроля осадок и деформаций сооружений и оборудования промышленных предприятий.

Точность измерений превышений на станциях, а также все другие основные характеристики нивелирования позволяют контролировать наиболее распространенные виды деформаций сооружений и оборудования многочисленных промышленных предприятий.

При этом измерения во всех классах нивелирования выполняются нивелирами и рейками одной точности, что создает удобство и возможность быстрого выполнения работ при большом количестве марок на объектах предприятия и разной точности намерений превышений в ступенях.

Методы гидростатического и гидродинамического нивелирования являются менее распространенными при изучении осадок сооружений и оснований, чем метод геометрического нивелирования, но для ряда объектов и условий контроля являются предпочтительными. Наибольшее применение они находят благодаря своим достоинствам:

- обращение с оборудованием и производство измерений не требуют высокой квалификации исполнителей;

возможность определения осадок точек, доступ к которым затруднен и в некоторых случаях вообще отсутствует;

при использовании гидростатических стационарных систем время и трудозатраты на непосредственное измерение осадок значительно меньше, чем при геометрическом нивелировании;

    - возможность автоматизации процессов измерений; -в благоприятных условиях точность гидростатического нивелирования может быть более высокой, чем при геометрическом нивелировании.

В то же время гидростатические приборы и системы имеют и ряд серьезных недостатков, не позволяющих использовать их широко в практике контроля деформаций многих объектов промышленных предприятий. К ним относятся:

    -колебание температуры, которое приводит к изменению плотности жидкости, а следовательно, и высот столбов жидкости, что не позволяет применять повсеместно гидростатический метод в производственных цехах, особенно это проявляется в системах с перераспределением жидкости; -влияние вибрационных нагрузок от работающего оборудования на точность отсчитывания, что не позволяет применять этот метод на сооружениях и оборудовании со значительными динамическими нагрузками; -малый диапазон измеряемых превышений, что затрудняет работы по установке КИА и использование метода при больших осадках и деформациях;

большие затраты на установку, проверку и обслуживание автоматизированных систем контроля, что делает выгодным его использование только при непрерывном контроле или периодическом контроле с высокой частотой замеров;

отсутствие общепринятых классов и методик гидростатического, гидродинамического нивелирования и приборов с перераспределением жидкости, что затрудняет метрологическое обеспечение геодезических работ на контролируемых объектах.

Исходя из перечисленных выше преимуществ и недостатков, переносные приборы гидростатического нивелирования целесообразно применять при измерении осадок объектов с летучим или периодическим контролем, где требуются точности измерения превышений выше, чем это может обеспечить геометрическое нивелирование, при этом отсутствуют большие перепады температуры окружающей среды и действуют незначительные вибрационные нагрузки, а измерения приходится производить в стесненных для других методов условиях.

Стационарные гидростатические и гидродинамические системы целесообразно применять при измерении осадок объектов с непрерывным или частым периодическим контролем и требуемой высокой точностью измерений.

При этом температурные и вибрационные нагрузки на систему должны быть незначительными.

Автоматизированные стационарные системы, дополнительно к сказанному, целесообразно создавать и при контроле деформаций сооружений на разных уровнях и в разных помещениях, что позволит значительно ускорить и удешевить съем информации.

Метод тригонометрического нивелирования для контроля осадок применяется значительно реже по сравнению с методами геометрического и гидростатического нивелирования.

Это связано с относительно низкой точностью измерений превышений и значительными затратами, связанными с точными измерениями не только вертикальных углов, но и линий. Однако, в настоящее время, в связи с созданием высокоточных электронных тахеометров, роль его значительно возрастает.

Похожие статьи




Проектирование методов и средств измерений превышений - Геодезический контроль осадок промышленного здания

Предыдущая | Следующая