Применение щитов прямоугольного поперечного сечения - Строительство тоннелей

Сооружение тоннелей мелкого заложения на застроенных городских территориях открытыми способами вызывает нарушения нормальной жизни города, связанные с ограничением движения транспортных средств и пешеходов в районе строительства, загрязнением воздушного бассейна, повышением уровня шума и вибрации, возможным повреждением фундаментов расположенных поблизости зданий и др.

Применение закрытых способов (горного и щитового) не требует вскрытия дневной поверхности по всей трассе тоннеля и не вызывает существенных нарушений городской жизни. Вместе с тем при строительстве тоннелей мелкого заложения традиционным горным способом неизбежны осадки грунтового массива, вызванные переборами грунта, многочисленными перекреплениями и др.

При щитовом способе работ возможно ограничение осадок грунтового массива, однако круговая форма поперечного сечения, характерная для щитового способа, является нерациональной для тоннелей мелкого заложения, не испытывающих значительных внешних нагрузок. Так, проходка пешеходных тоннелей щитами кругового поперечного сечения неэффективна, поскольку площадь выработки используется лишь на 60%.

Применяемые в практике городского подземного строительства прямоугольные щиты незамкнутого сверху профиля требуют вскрытия дневной поверхности на всем протяжении тоннеля. В связи с вышеизложенным заслуживает внимания опыт Японии по созданию и внедрению щитовых агрегатов прямоугольного поперечного сечения для проходки городских тоннелей мелкого заложения закрытым способом [2].

Основные преимущества прямоугольных щитов перед круговыми следующие:

    - рациональное использование всего выработанного пространства; - уменьшение объемов разрабатываемого грунта (примерно на 40%) и снижение стоимости строительных работ; - увеличение толщины защитной кровли над тоннелем и возможность проходки под инженерными коммуникациями; - снижение осадок поверхности земли в процессе проходки; - повышение степени устойчивости тоннельной обделки против неуравновешенного давления грунта, вызванного проходческими работами или устройством фундаментов вблизи строящегося тоннеля.

Щиты прямоугольного поперечного сечения могут быть использованы при строительстве перегонных тоннелей метрополитена, тоннелей для пропуска легковых автомобилей, пешеходных и коллекторных тоннелей в мягких и слабых грунтах [30].

Первый прямоугольный щит замкнутого профиля был создан для проходки коллекторного тоннеля длиной 534 м вг. Нагоя (Япония). Трасса тоннеля проходит на глубине 4 м от поверхности земли в толще аллювиальных отложений, представленных илистыми глинами, крупно - и среднезернистыми песками и илистыми песками. Уровень грунтовых вод расположен на глубине 10 м от дневной поверхности.

Щитовой агрегат длиной5,0 м, шириной 4,3 м, высотой 3,1 м и массой 48 т состоит из ножевой, опорной и хвостовой частей и оснащен 14 гидравлическими домкратами с ходом поршня 1,2 м и усилием 1400 кН. В ножевой части смонтирован удлиненный шандорный козырек, выдвигаемый 20-тонным домкратом и поддерживаемый шестью вертикальными домкратами. Наличие выдвижного козырька и забойных домкратов предотвращает выпуски грунта в забое щита.

На хвостовой оболочке щита монтировали секции прямоугольной обделки тоннеля из шести железобетонных блоков шириной 1,0 м и толщиной 0,25 м и центральной стальной подпорки.

схема прямоугольного щитового агрегата

Рис. 16 Схема прямоугольного щитового агрегата: 1 - железобетонные блоки; 2 - хвостовая оболочка щита; 3 - стальная подпорка; 4 - арматура;5 - накладки; 6 - болт

Стыки между блоками устраивали на болтах, скрепляющих накладки, приваренные к рабочей арматуре блоков. На рис. 16 приведена схема прямоугольного щитового агрегата.

Для монтажа обделки использовали рычажный укладчик, способный перемещаться как в горизонтальном, так и в вертикальном направлении. Вначале монтаж одной секции обделки занимал150 мин, а затем 80 мин (на 200-й секции) и 65 мин (на 350-й секции); соответственно время проходческого цикла было уменьшено с 400 до 200 мин.

По мере монтажа обделки в строительный зазор на участке хвостовой оболочки щита нагнетали стабилизирующую смесь из песка, мелкого гравия, бентонита и воды. Измеренное во время передвижки щита смещение относительно вертикальной оси не превышало ±20 мм и стабилизаторы не потребовались. При этом линейные горизонтальные смещения щита и обделки составляли соответственно 0,6 и 1,8 см, а вертикальные - соответственно 5,5 и3,8 см.

По результатам систематических измерений были построены графики изменения осадок поверхности земли над тоннелем при разных расстояниях от расчетного створа до забоя щита. Максимальные значения составили 42 мм, что не превышает осадок при проходке круговыми щитами.

В период строительства тоннеля производили также измерения давления грунта и усилий в обделке, для чего на контакте обделки с грунтом установили 36 датчиков давления. Анализ результатов длительных измерений показал, что нагрузки на тоннель и усилия в обделке не превышали расчетных.

В процессе проектирования и строительства тоннеля возникли различные проблемы, для решения которых были проведены комплексные экспериментальные исследования в лабораторных и натурных условиях [31]. Одной из проблем явилось обеспечение требуемой жесткости стыков между блоками, которые под действием изгибающих моментов имеют тенденцию к раскрытию. Были проведены исследования работы обделки под нагрузкой для трех типов стыков: омоноличенного, болтового и болтового в сочетании со сваркой закладных деталей и обмазкой торцовых поверхностей эпоксидным клеем.

Модель секции обделки в масштабе 1/2 натуральной величины обжимали со всех сторон гидравлическими домкратами, имитируя постоянную вертикальную равномерно распределенную нагрузку интенсивностью 100 кН/м2 и изменяющееся по высоте стен горизонтальное давление грунта.

В результате экспериментальных исследований было установлено, что наиболее подходящими следует считать болтовые стыки с приваренными к рабочей арматуре блоков накладками и покрытые эпоксидным клеем. Несущая способность и жесткость таких стыков незначительно отличаются от несущей способности и жесткости тела блоков. Этот вывод был подтвержден полномасштабными испытаниями обделки под нагрузкой, в натурных условиях.

Вторая проблема касалась создания специализированного укладчика блоков обделки. Как правило, при монтаже круговых обделок рабочий орган рычажного укладчика вращается вокруг центральной оси, удлиняется и укорачивается. Для монтажа прямоугольных обделок, помимо этого, необходимо обеспечить вертикальное и горизонтальное перемещение блокоукладчика. Такой агрегат с гидравлическим приводом был создан и испытан в производственных условиях. Кроме того, была изготовлена специальная тележка с поворотным столом для перевозки блоков обделки.

Третья проблема связана с опасностью поворота щита относительно его вертикальной оси при передвижке. Если в щитах кругового сечения их закручивание не препятствует точному монтажу колец обделки, то даже незначительный крен прямоугольного щита не позволит соединить соседние секции обделки между собой.

Для оценки возможного диапазона углов поворота щита и разработки мер по их предотвращению были проведены экспериментальные исследования. Модели щитов кругового, эллиптического и прямоугольного сечения помещали в желатиновую среду, имитирующую грунтовый массив. Были установлены соотношения между крутящим моментом и углом поворота модели и показано, что для закручивания модели прямоугольного щита на тот же угол, что и круглого, требуется в 4 - 5 раз больший крутящей момент. Были созданы специальные электронные и оптические приборы для контроля за поворотами щита, его вертикальными и горизонтальными смещениями, а также ножевые стабилизаторы, вдавливаемые в грунт домкратами и препятствующие закручиванию щита.

Четвертая проблема относится к осуществлению безосадочной проходки и решается своевременным заполнением строительного зазора в зоне хвостовой оболочки щита. Опытным путем определили оптимальный состав нагнетаемой смеси (на 1 м3 смеси - 600кг песка, 780 кг мелкого гравия, 600 л воды, 60 кг бентонита и 2 кг добавок) и давление нагнетания.

Опыт строительства тоннеля в г. Нагое (Япония) и результаты экспериментальных исследований были использованы при строительстве двух коллекторных тоннелей в г. Токио (Япония). Один из них длиной 370 м и сечением 5Ч4,15 м заложен под руслом реки на глубине до 20 м от поверхности воды между двумя шахтными стволами.

Щит со скругленными углами имел длину 6,6 м (хвостовая оболочка - 2,05 м, ножевая часть - 1,8 м), высоту 4,38 м и ширину 5,23 м. Породу в забое щита разрабатывали буровзрывным способом. Обделку тоннеля собирали из железобетонных рамных элементов толщиной 0,35 м, шириной 1,0 м и средней вертикальной перегородки толщиной 0,25 м, расположенной несимметрично относительно оси тоннеля. Обделку монтировали с перевязкой продольных швов соседних секций.

Дальнейшее развитие щитовой техники для проходки тоннельных выработок прямоугольного поперечного сечения связано с созданием механизированных щитовых агрегатов нового поколения. В настоящее время в Японии применяются механизированные щиты прямоугольной формы с нетрадиционными рабочими органами:

    - барабанного типа с двумя и более барабанами, расположенными перпендикулярно оси тоннеля и оснащенными резцами, скалывателями или шарошками (рис. 17,а); - роторного типа, состоящими из нескольких режущих дисков одинаковых или разных размеров, несущих породоразрушающие инструменты (рис. 17,б).
механизированные щиты прямоугольного поперечного сечения

Рис. 17 Механизированные щиты прямоугольного поперечного сечения: а - с рабочим органом барабанного типа; б - с рабочим органом роторного типа; 1 - корпус щита; 2 - двухбарабанный рабочий режущий диск; 3 - центральный режущий диск; 4 - боковые режущие диски

Разработаны щиты с различным соотношением размеров рабочего органа для проходки как "горизонтальных" прямоугольных выработок, пролет которых в 2 - 3 раза превышает высоту, так и "вертикальных" с высотой более пролета.

В зависимости от инженерно-геологических условий щиты оборудуют пригрузочными камерами с бентонитовым или грунтовым пригрузом.

Применение прямоугольных механизированных щитов лежит в основе двух новых технологий строительства тоннелей мелкого заложения в слабоустойчивых грунтах, получивших название [32]:

    -"проходка коробчатыми щитами" (BSM); -"мульти-микрощитовая проходка" (MMST).

Технология BSM предназначена для строительства подземных сооружений мелкого заложения на застроенных городских территориях при наличии густой сети подземных коммуникаций, не подлежащей перекладке.

В этом случае ограждающие конструкции, выполненные по технологии "стена в грунте", а также буровые или забивные сваи не могут быть устроены с поверхности земли и применение классического котлованного или траншейного способов оказывается невозможным.

Сущность технологии BSM заключается в том, что непосредственно под инженерными коммуникациями с помощью прямоугольного щита проходят одну или несколько подземных выработок, объединяют их между собой, а затем из объединенной выработки устраивают ограждающие конструкции, выполненные по технологии "стена в грунте", в виде буровых или виброопускных свай. Под защитой ограждающей конструкции разрабатывают грунт и возводят обделку подземного сооружения.

Данная технология впервые была апробирована на строительстве подземной автостоянки вместимостью 111автомобилей в центральном районе г. Токио [33].Стоянка расположена под проезжей частью автомагистрали вблизи зданий, непосредственно под инженерными коммуникациями (электрическими кабелями, газопроводом, водопроводом, канализацией, телефонными кабелями).

Стоянка заложена в толще аллювиальных песков и глинистых грунтов. Уровень грунтовых вод находится на глубине 3 - 4 м от поверхности земли. При выборе метода строительства традиционные технологии устройства ограждения стен оказались неприемлемыми из-за невозможности перекладок подземных коммуникаций. Была предложена технология BSM с применением прямоугольного коробчатого щита с двухбарабанным рабочим органом и поэтапным ведением работ (рис. 18).

Рис. 18 Последовательность строительства подземной автостоянки по технологии BSM 1 - подземные коммуникации; 2 - зона укрепленного грунта; 3 - скважины для инъецирования; 4 - нижняя вспомогательная выработка; 5 - верхняя вспомогательная выработка; 6 - объединенная выработка; 7- буровая свая Ш 0,45 м; 8 - временные сваи; 9 - покрытие проезжей части; 10 - конструкция автостоянки; 11 - грунт обратной засыпки

На I этапе прямоугольным щитом была пройдена вспомогательная выработка длиной 163 м, низ которой совпадает с серединой лотковой плиты подземной автостоянки. Из этой выработки забурили восстающие вертикальные скважины, через которые выполнили укрепительную цементацию грунта под подземными коммуникациями.

На II этапе была пройдена верхняя вспомогательная выработка, верх которой совпадает с верхом плиты перекрытия автостоянки, а низ - на 0,25 - 1,20 м превышает отметку верха нижней вспомогательной. Обделки обеих выработок объединили между собой при помощи скользящих стальных листов, а грунт из зазора между обделками удалили.

Работы III этапа включали устройство ограждающих буроопускных свай рядом с объединенной выработкой и непосредственно из выработки. В пробуренные скважины диаметром 0,45 м опускали двутавровые балки с последующим обетонированием. На внутренний ряд свай опирали покрытие проезжей части, по которому пропускали наземные транспортные средства в период строительства подземной автостоянки.

Работы IV этапа предусматривали последовательную разработку грунта по схеме "сверху - вниз" между ограждающими конструкциями.

На V этапе выполняли бетонирование конструкций подземной стоянки по схеме "снизу - вверх". Готовую конструкцию засыпали грунтом, полностью восстанавливая поверхностные условия.

В процессе строительства проводили мониторинг напряженно-деформированного состояния конструкций подземной автостоянки и окружающего грунтового массива. Максимальные осадки грунта после проходки нижней вспомогательной выработки составили 5 мм, а верхней - 15мм; горизонтальные смещения не превышали 1,1 мм.

Опыт строительства подземной автостоянки с применением технологии BSM оказался успешным и намечается к использованию при сооружении других подземных объектов в Японии.

Применение технологии MMST предусматривает щитовую проходку нескольких прямоугольных выработок по контуру будущего подземного сооружения. Каждая из выработок закрепляется стальными коробами, а затем заполняется бетонной смесью, образуя элементы обделки подземного сооружения. Отдельные сталебетонные элементы объединяют между собой. Под защитой замкнутой обделки разрабатывают грунтовое ядро и возводят внутренние конструкции подземного сооружения (рис. 19).

последовательность строительства подземного сооружения по технологии mmst

Рис. 19 Последовательность строительства подземного сооружения по технологии MMST: 1 - вспомогательная выработка, сооружаемая прямоугольным щитом; 2 - зазор; 3 - экскаватор; 4 - проезжая часть; 5 - стальной короб; 6 - зона химического закрепления грунта; 7 - выдвижной стальной лист; 8 - зона обетонирования

К преимуществам данной технологии по сравнению с традиционными относятся: рациональная форма и размеры поперечного сечения; возможность строительства подземного сооружения с минимальной глубиной заложения (до 1 м), что практически невозможно при проходке щитами кругового поперечного сечения; исключение нарушений на поверхности земли.

Новая технология запатентована в 1991 г. и апробирована в 1997 г. на опытном участке строительства системы вентиляционных тоннелей А, В и С длиной соответственно75,4; 77,7; 60,0 м, примыкающих к вентиляционной станции на трассе экспрессной автомагистрали Транс-Кавасаки[32].Между вентиляционными тоннелями предусмотрены четыре шахтных ствола.

Тоннели имеют прямоугольное очертание пролетом от 13,6 до 14,8 м и высотой от 14,2 до 15,6 м. Глубина заложения тоннелей изменяется от 4,7 до 7,3 м.

Проведению опытной проходки предшествовали крупномасштабные эксперименты на физических моделях в масштабе 1:2. Измеряли напряженно-деформированное состояние обделки и грунтового массива.

Работы по строительству тоннелей начали с проходки вспомогательных контурных выработок прямоугольного сечения механизированными щитами двух типов: "горизонтальным" шириной 7,0 м и высотой 2,5 м и "вертикальным" шириной 2,5 м и высотой 7,5 м. Всего на строительстве каждого тоннеля использовали по два щита.

В тоннеле А работали щиты с барабанным рабочим органом и бентонитовым пригрузом, в тоннеле В - скомбинированным рабочим органом и грунтовым пригрузом, а в тоннеле С - с роторным рабочим органом и бентонитовым пригрузом.

Контур каждой выработки закрепляли коробчатой конструкцией длиной 1,2 м из стальных листов, усиленных ребрами жесткости. Короба соединяли между собой на сварке.

Проходку вспомогательных выработок вели со средней скоростью 2,4 м/сут и максимальной 4,8 м/сут. Сравнительно невысокие темпы проходки объясняются небольшой длиной выработок, что не позволяет обеспечить режим скоростной проходки. На начальной стадии максимальные отклонения щитов от проектной трассы достигали 195 мм (по вертикали) и 124 мм (в плане), а затем не превышали 100 мм.

После проходки вспомогательных выработок разрабатывали грунтовые целики между ними шириной от0,5 до 1,0 м в вертикальном направлении и от 0,8 до 1,6 м в горизонтальном направлении. Образующиеся зазоры герметизировали с помощью скользящих стальных листов, выдвигаемых домкратными устройствами, и нагнетанием в грунт стабилизирующих составов. После этого вспомогательные выработки заполняли бетонной смесью, создавая сплошную сталебетонную обделку основного тоннеля. Под защитой обделки разрабатывали грунтовое ядро с помощью гусеничного экскаватора и возводили внутренние конструкции.

В настоящее время применение технологии MMST предусматривается на строительстве четырехполосного автодорожного тоннеля по трассе автомагистрали в районе г. Токио [32].Наличие плотной капитальной застройки и интенсивного уличного движения затрудняют применение траншейного способа работ, традиционной щитовой проходки и НАТМ, при которых в данных условиях неизбежны нарушения поверхности.

Рассмотренные выше новые технологии строительства городских подземных сооружений мелкого заложения в слабоустойчивых грунтах характеризуются достаточно высокой эффективностью и обеспечивают минимизацию нарушений поверхностных условий.

Выбор той или иной технологии определяется видом подземного сооружения, его размерами, конструктивными особенностями, а также градостроительными, топографическими и инженерно-геологическими условиями района строительства.

Похожие статьи




Применение щитов прямоугольного поперечного сечения - Строительство тоннелей

Предыдущая | Следующая