Общие сведения - Укрепление грунтов химическими методами

Разработка методов химического закрепления грунтов началась в 1931 г., когда отечественный ученый Б. А. Ржаницын разработал уникальный двухрастворный способ силикатизации водонасыщенных песков. По этой же схеме осуществлялась силикатизация просадочных лессовых грунтов, в которой роль второго реагента выполнял непосредственно грунт. [5]

На начальной стадии химические способы закрепления основывались на использовании неорганического полимера - силиката натрия. На следующем этапе ученые стали смешивать силикат натрия небольшой плотности с отверждающими растворами кислот и солей. Малая вязкость растворов (1,5--3,0 мПа. с) позволила закреплять песчаные грунты с коэффициентом фильтрации от 0,2 до 2,0 м/сут.

Сегодня, в связи со значительным развитием химии органических полимеров, наиболее популярными реагентами являются выпускаемые химической промышленностью смолы, а именно мочевиноформальдегидная (карбамидная) смола. В качестве отвердителя используют соляную и щавелевую кислоты. Однако некоторая токсичность, обусловленная выделением свободного формальдегида в момент разработки закрепленного массива, т. е. при проходке тоннеля или вскрытии котлована, ограничивает применение данного способа. В результате лабораторных исследований удалось значительно уменьшить выделение свободного формальдегида. Это несколько снизило прочность закрепления, но позволило применять смолизацию при проходке подземных выработок.

В разработку рецептур химических способов закрепления песков и лессов большой вклад внесли доктора технических наук В. В. Аскалонов и В. Е. Соколович.

Химическое закрепление грунтов в широком смысле представляет собой искусственное целенаправленное преобразование строительных свойств естественных грунтов их химической обработкой различными реагентами, основанной на реакциях взаимодействия реагентов между собой или с участием химически активной части грунтов. Такое закрепление грунтов обеспечивает необратимость и долговечность приобретенных ими свойств.

Инъекционное химзакрепление необратимо повышает механическую прочность и устойчивость, уменьшает сжимаемость и водопроницаемость грунтов, а также устраняет просадочность при замачивании лессов и лессовидных грунтов, что обеспечивает широкие возможности его применения для решения многих практических задач в строительстве.

В промышленном и гражданском строительстве инъекционное химзакрепление грунтов применяется для:

Усиления и устройства оснований, фундаментов вновь строящихся зданий и сооружений;

Усиления оснований и фундаментов существующих зданий и сооружений;

Устройства защитных стен и других подземных конструкций из закрепленных грунтов в качестве мероприятий против подвижек грунтов при их подработке горными выработками;

Устройства подпорных стенок и укрепления откосов при вскрытии строительных котлованов и других открытых выработок;

Повышения несущей способности свай и других опор;

В качестве временного мероприятия при проходке в слабых грунтах различных подземных выработок.

С химической точки зрения в основе инъекционного химзакрепления грунтов лежит явление конденсации неорганических и органических полимеров (крепителей) при их взаимодействии с коагулянтами (отвердителями) и заключающееся в отверждении полимеров в порах и трещинах грунтов, чем обеспечиваются положительные изменения физико-механических свойств закрепляемых грунтов.[1]

Закрепление грунтов на основе растворов силиката натрия независимо от применяемых отвердителей называется силикатизацией, на основе карбамидных смол - смолизацией, на основе цементных растворов - цементацией.

Участвующие в процессе закрепления грунтов химические вещества в растворах или газы называются закрепляющими реагентами.

Смесь растворов крепителей и отвердителей рабочих концентраций при однорастворном химзакреплении грунтов называется гелеобразующей смесью.

С технологической точки зрения инъекционное химзакрепление заключается в нагнетании под давлением в поры грунтов в их естественном залегании отверждающихся и закрепляющих грунты различных химических реагентов в виде двух отдельно нагнетаемых растворов (двухрастворный способ), одного раствора (однорастворный однокомпонентный способ), одного раствора и газа (двухкомпонентные газовые способы), гелеобразующих смесей из двух компонентов (однорастворные двухкомпонентные способы).[1]

При закреплении грунтов под существующими зданиями и сооружениями с ветхими фундаментами в качестве вспомогательного мероприятия против вероятных утечек закрепляющих реагентов через полости и трещины в кладке при нагнетании предусматривается предварительная цементация фундаментов на контакте подошвы с основанием (вспомогательная цементация).

Для закрепления грунтов в промышленном и гражданском строительстве применяются специально разработанные и опробованные опытом инъекционные химические способы. Каждый из способов имеет свою область применения, ограниченную величинами коэффициента фильтрации - для песчаных грунтов и значениями коэффициента фильтрации, емкости поглощения и степени влажности - для просадочных лессовых грунтов. Выбор способов закрепления для конкретных грунтов осуществляется, руководствуясь указанной таблицей, с учетом гранулометрического состава, номенклатуры, коэффициента фильтрации и других характеристик естественных грунтов, а также проектных требований к прочностным и деформационным свойствам закрепленных грунтов.

С целью повышения эффективности (прочности и радиуса) закрепления грунтов однорастворными способами силикатизации и смолизации, за исключением силикатизации просадочных лессовых грунтов, во многих случаях бывает целесообразно производить предварительную химическую обработку грунтов отвердителями. Вопрос о предварительной химической обработке решается в результате проведения специальных лабораторных исследований и опытных работ в натурных условиях по химзакреплению грунтов.

В зависимости от инженерно-геологических условий, месторасположения объекта, объема работ, габаритов и технических характеристик оборудования реализуется одна из технологических схем производства работ:

Укрепление грунтов с дневной поверхности (в зависимости от местных условий растворный узел перемещают по объекту по мере продвижения фронта работ или оставляют в центральной части, раствор подается по трубопроводам, проложенным к участку инъекционных работ);

Укрепление грунтов из подземной выработки в один этап или, при протяженной зоне неустойчивых грунтов, поэтапно, с чередованием фаз укрепления и проходки (буровое и инъекционное оборудование размещается в забое);

Укрепление грунтов из подземной выработки при размещении бурового оборудования в забое, инъекционного (растворосмесительного и насосного) - на дневной поверхности.[2]

Расположение инъекционных скважин должно обеспечить необходимый контур и сплошность укрепления грунтового массива (расстояние между скважинами и рядами скважин зависит от характеристик укрепляемого грунта и проникающей способности инъекционных растворов).

Дополнительные скважины следует назначать в том случае, если после инъекции раствора в скважинах будут обнаружены зоны с поглощением раствора, превышающим в 10 раз среднее поглощение для данной очереди скважин, участки с неполноценной инъекцией или участки скважин, которые не могли быть пробурены до проектной глубины по производственным обстоятельствам.

Оборудование для проведения работ по укреплению грунтов следует выбирать в зависимости от способа укрепления грунтов (инъекция, струйная цементация), объемов работ, вида инъекционного раствора и технологической схемы его приготовления и нагнетания.

Буровое оборудование в зависимости от назначения должно обеспечивать ударно-вращательный и вращательный способы бурения скважин, необходимое их направление, глубину бурения и диаметр скважин.

Смесительное и нагнетательное оборудование, оснащенное контрольно-измерительной аппаратурой, должно обеспечивать тщательное перемешивание компонентов раствора, требуемое давление нагнетания, высокие темпы работ при минимальных трудовых и материальных затратах, наименьшее загромождение строительных площадок, удобство транспортировки, монтажа, демонтажа и безопасное обслуживание.

В зависимости от гидрогеологических условий участка и принятой технологии инъекции при нагнетании раствора следует использовать кондукторы или пакеры. При обработке трещиноватых грунтов нагнетание раствора осуществляется через буровой став или манжетную колонну, а для обработки несвязных грунтов - через забивные инъекторы, инъекторы-тампоны или манжетные колонны.[2]

Кондукторы предназначены для закрепления и герметизации устья скважины, обеспечения заданного направления скважины при бурении, для установки на скважине инъекционной головки с запорной арматурой и измерительными приборами.

Пакеры предназначены для герметизации скважины (одиночный пакер) или изолирования участка скважины, намеченного для инъекции (двойной пакер). Закрепление пакера в скважине происходит за счет механического обжатия или гидравлического расширения резиновых манжет, укрепленных на нагнетательном ставе.

Манжетные колонны, установленные в скважины, позволяют обрабатывать несвязные грунты в любой последовательности, на любых участках и выполнять многократную инъекцию растворов разных типов в одну и ту же скважину.

Оборудование скважин (кондукторы, пакеры, манжетные колонны, инъекторы, превенторные устройства и т. п.) подбирается в зависимости от инженерно-геологических и гидрогеологических условий объекта и способа инъекции грунтов.

Методы укрепления грунтов по типу используемых инъекционных материалов подразделяются на цементацию, силикатизацию и смолизацию; по методу введения раствора в грунт - на обычную инъекцию и струйную цементацию.

Цементация грунтов как способ представляет собой заполнение пустот, трещин и крупных пор в крупнообломочных грунтах раствором, образующим со временем твердый цементный или цементно-глинистый камень.

Для цементации можно использовать цементные, цементно-песчаные и цементно-глинистые растворы. В каждом отдельном случае необходимо выбирать как состав раствора, так и его водоцементное отношение (В/Ц), которое может изменяться от 1 до 0,4. Кроме того, инъекционные растворы должны обладать следующими характеристиками: подвижностью раствора по конусу АзНИИ 10--14 см, водоотделением в течение 2 ч 0-2 %, прочностью при сжатии после твердения в течение 28 сут 1--2 МПа. Исходная плотность таких растворов, как правило, составляет 1,60--1,85 г/см3. Все эти характеристики обусловливаются проектом.

Применение цементных растворов, как установлено практикой, не прекращает фильтрации полностью. Это объясняется повышенной крупностью помола цемента, который в настоящее время имеет размер частиц порядка 50 мкм, а это значит, что трещины размером 0,2 мм физически не могут быть зацементированы.

В отличие от цементации глинизация может применяться для заполнения карстовых пустот только в сухих породах, способных после нагнетания глинистого раствора впитывать из него воду. В связи с этим после заполнения пустот глинистый раствор должен находиться в течение нескольких суток под гидравлическим напором.

При глинизации применяют глинистый раствор плотностью 1,2--1,3 г/см3.

В результате повышения давления (более 2 МПа) вода из глинистого раствора отжимается, обезвоженное глинистое тесто плотно заполняет пустоты и порода становится водонепроницаемой.

Глинизация так же, как и цементация, может применяться только при небольших скоростях движения грунтовых вод во избежание уноса раствора из тампонируемой зоны, т. е. в гравелистых и трещиноватых грунтах, в которых коэффициент фильтрации находится в пределах от 50 до 5000 м/сут.

Цементация инъекционный строительство

технологическая схема процесса цементации грунтового основания

Рисунок 1 Технологическая схема процесса цементации грунтового основания: 1 - емкость для замешивания раствора; 2 - насос для раствора; 3 - напорный трубопровод; 4 - обратный труопровод; 5 - инъекторы; 6 - укрепленный грунт

В 1931 г. был разработан двухрастворный способ силикатизации, сущность которого состояла в том, что в песчаный грунт любой влажности через забитую металлическую перфорированную трубу (инъектор) поочередно нагнетались раствор силиката натрия (натриевое жидкое стекло) Na2OnSiO2 и раствор хлористого кальция CaCl2. В результате химической реакции между ними в порах грунта образуется гидрогель кремниевой кислоты, и грунт быстро и прочно закрепляется.[5]

Двухрастворный способ обеспечивает высокую прочность грунта и практически его полную водонепроницаемость. Недостатками этого способа являются высокая стоимость и большая трудоемкость работ. Поэтому его преимущественно применяют при усилении оснований под сооружениями. Закрепленный грунт имеет кубиковую прочность 1,5...3,5 МПа.

Прочность закрепленного грунта не снижается при воздействии на него агрессивных вод.

Для закрепления мелких и пылеватых песков с коэффициентом фильтрации от 0,0006 до 0,006 см/сек применяют однорастворный способ. В грунт нагнетают гелеобразующий раствор из жидкого стекла и фосфорной кислоты либо из жидкого стекла, серной кислоты и сернокислого аммония. Первая рецептура обеспечивает более быстрое гелеобразование.

Прочность закрепленного грунта значительно ниже, чем при двухрастворном способе. Этот способ находит применение главным образом при устройстве противофильтрационных завес.

Однорастворный способ силикатизации используют и для закрепления лессовых просадочных грунтов, имеющих коэффициент фильтрации от 0,0001 до 0,0023 см/сек.

При этом в грунт нагнетают раствор одного жидкого стекла. Гелеобразование происходит за счет реакции раствора жидкого стекла с водорастворимыми солями грунта и его обменным комплексом. Роль второго раствора выполняет сам грунт.

Не рекомендуется применять силикатизацию для закрепления грунтов, пропитанных нефтяными продуктами, смолами и маслами, при наличии грунтовых вод, имеющих рН >9 при двухрастворном способе, и в случае рН>7,2 при однорастворном способе силикатизации мелких и пылеватых песков.

Нецелесообразно подвергать силикатизации грунты, когда скорость грунтовых вод превышает 0,006 см/сек.

технологическая схема процесса силикатизации грунтового основания

Рисунок 2 Технологическая схема процесса силикатизации грунтового основания: 1 - насос для откачки воды из катода; 2 - наголовник; 3 - ниппель; 4- генератор постоянного тока( для электросиликатизации); 5 - бак с раствором; 6 - баллон со сжатым воздухом(компрессор); 7 - перфорированная часть инъектора; 8 - наконечник инъектора; 9 - дополнительный инъектор(для электросиликатизации)

При силикатизации просадочных лессовых грунтов с влажностью 16--20% инъекцию силикатного раствора плотностью 1,13--1,20 г/см3 можно осуществлять с помощью забивки инъекторов или через стенки пробуренных скважин. Для этого бурильным станком ЦГБ-50 проходят скважину глубиной, равной длине первой заходки. Длина заходки в существующей практике составляет 2--3 м. Затем в верхней зоне заходки устанавливают надувной тампон, через который по шлангу от насоса раствор нагнетают в грунт. Затем тампон вынимают из скважины и производят ее бурение на длину следующей заходки. Так повторяют на всю глубину закрепления просадочного лесса.[3]

При химическом закреплении песчаных грунтов на глубине 50--150 м, нагнетание химических растворов осуществляют через манжетные инъекторы, опускаемые в пробуренную под защитой глинистого раствора скважину диаметром 120--150 мм. Скважину пробуривают на всю глубину закрепляемой зоны, затем в скважину, заполненную глинистым раствором (благодаря чему стенки ее не требуют крепления), погружают инъектор с резиновыми манжетами, закрывающими его отверстия. После этого через нижнюю манжету с применением тампона нагнетают цементно-глинистый раствор, который заполняет зазор между инъектором и стенкой скважины. Этот вариант позволяет в дальнейшем нагнетать закрепляющий раствор в любой зоне инъектора. Манжетный инъектор может быть использован для закрепления грунта под существующими зданиями путем задавливания его из специально подготовленной траншеи.

Таким образом, применение инъекторов различной конструкции позволяет нагнетать химические растворы на требуемую глубину.

Смолы, которые могут быть использованы для закрепления грунтов, должны обладать невысокой вязкостью и полимеризоваться в порах грунта при температуре от 4 до 10 °С. К таким смолам относятся:

Мочевино-формальдегидные (карбамидные), образующиеся в результате поликонденсации мочевины и формальдегида;

Фенольные, образующиеся в результате поликонденсации фенолов и альдегидов;

Фурановые, образующиеся при конденсации фурфурола и фурилового спирта; акриловые--производные акриловой кислоты;

Эпоксидные, получающиеся при конденсации эпихлоргидрина (или дихлоргидрина) с полиаминами, фенолами, полиспиртами и другими соединениями.[2]

Самой приемлемой для закрепления грунтов по всем критериям является мочевиноформальдегидная (карбамидная) смола с различными отвердителями. Эта смола легко растворяется в воде, имеет малую вязкость, отверждается при невысокой температуре, а самое главное выпускается отечественной промышленностью в виде клеев в большом масштабе и по своей цене вполне доступна для широкого использования при закреплении грунтов.[6]

Сущность способа состоит в нагнетании в грунт гелеобразующего раствора, состоящего из раствора смолы и отвердителя в виде соляной или щавелевой кислоты. Способ обеспечивает прочное закрепление, придает грунтам водонепроницаемость. Кроме того, способ позволяет закреплять карбонатные грунты. При повышенном содержании карбонатов (до 3%) проводится предварительная обработка грунта раствором кислоты в объеме, равном объему гелеобразующего раствора.[5]

технологическая схема процесса смолизации грунтового основания

Рисунок 3 Технологическая схема процесса смолизации грунтового основания: 1 - инъектор; 2 - рабочий шланг; 3 - манометр; 4 - рабочий бачок; 5 - пробковый шланг; 6 - компрессор или баллон со сжатым воздухом

Похожие статьи




Общие сведения - Укрепление грунтов химическими методами

Предыдущая | Следующая