Криволинейные поверхности. - Пеностекло и его особенности

Криволинейные поверхности, которые имеются в ряде эксклюзивных архитектурных сооружений, предполагают жесткие условия эксплуатации теплоизоляции. Потому к ним и предъявляются особые требования: небольшой вес, высокая прочность, устойчивость к механическим нагрузкам, ветру, воде, легкость установки на криволинейные поверхности. Самым подходящим материалом, отвечающим всем этим требованиям, является пеностекло. Например, оно успешно применяется для теплоизоляции таких сложных сооружений, как бассейны.

В частном строительстве.

Применение пеностекла популярно и для утепления частных домов. Причем, его можно использовать в качестве теплоизолирующего материала для фундамента, кровли, стен, пола. Например, если на участке остро стоит проблема с близкими грунтовыми водами или с затоплением, то пеностекло полностью решит этот вопрос. Оно не даст влаге проникнуть к зданию, так как обладает водоотталкивающим свойством.

Кровлю тоже отлично теплоизолировать этим материалом. Пеностекло позволит даже организовать на крыше небольшой садик. Нужно лишь сверху насыпать грунт, слоем 150 мм и при этом не следует переживать, что корневая система может повредить кровлю - пеностекло не пропустит ее.

Также этот замечательный материал отлично подходит для утепления бань, причем, в отличие от минеральноватных плит, срок эксплуатации будет почти неограниченным.

Прочие области применения в строительстве.

Пеностекло рекомендуется к теплоизоляции различных вариантов утепления и изоляции полов, потолков, каминов, дымоходов, душевых комнат, ванных комнат, бань, саун, подвалов, хранилищ, подсобных, а также хозяйственных помещений и т. п.

Существуют области, в которых применение пеностекла эффективнее использования других теплоизоляционных материалов:

    * высотное строительство (по причине высокой прочности и огнестойкости материала); * теплоизоляция больших по площади, а также эксплуатируемых и имеющих сложную геометрическую форму кровель; * создание теплоизоляционных конструкций в зданиях эксплуатируемых в сложном температуро-водном режиме (портовые сооружения, бассейны, аквапарки, бани и т. п.); реставрация старинных зданий; * теплоизоляция подземных конструкций и сооружений; * устройство теплозащиты в промышленности, особенно пищевой и фармакологической (по причине санитарной безопасности и чистоты пеностекла); * теплоизоляция трубопроводов и тепловых агрегатов (по причине широкого температурного режима применения); * химическое и нефтехимическое производство (по причине стойкости к кислотно-щелочному воздействию, а также воздействию активных углеводородных жидкостей и газов); * пеностекло практически безальтернативно в атомной промышленности, так как имеет самый высокий класс пожаробезопасности и огнестойкости среди всех классических строительных теплоизоляционных материалов.

Каждый вид пеностекла имеет свои приоритетные области применения. Блочное пеностекло используется для утепления и звукоизоляции наружных стен зданий, внутренних перекрытий, утепления фундаментов, теплоизоляции печей и трубопроводов. Гранулированное пеностекло используется преимущественно для утепления кровли и чердачных перекрытий, а также в качестве засыпного материала для стен. Кроме того, низкая плотность в сочетании с высокими теплоизолирующими свойствами, позволяет использовать гранилированное пеностекло как наполнитель для легковесных панелей, легких бетонов, сухих строительных смесей и теплоизоляционной штукатурки, а благодаря высокой морозоустойчивости, - как теплоизолоизолирующий слой дорожного полотна. Применение пеностекла в конструкциях дорожной одежды снижает деформацию пучения при промерзании конструкции, и исключает возможность просадки полотна при оттаивании его основания. Данная технология широко применяется при строительстве дорог в Норвегии, Германии и США.

Более прочный теплоизоляционный материал может нести часть нагрузки за счет собственных физических свойств, позволяя в некоторых случаях и вовсе не применять дополнительных металлических креплений, уменьшающих сопротивление теплопередаче теплоизоляционного слоя. Стабильность размеров блоков Благодаря тому, что пеностекло состоит исключительно из стеклянных ячеек, этот материал не дает усадки и не изменяет геометрические размеры с течением времени под действием веса строительных конструкций эксплутационных нагрузок. Все это имеет очень существенное значение как для всей строительной конструкции в целом, так и для сохранения эксплуатационных свойств теплоизоляционного слоя. Наличие данного фактора весьма важно, т. к. материалы, размеры которых не стабильны из-за теплового расширения/сжатия или усадки во время эксплуатации могут вызывать повреждение гидроизоляционного и отделочного слоев, образовывать "мостики холода" из-за усадки, провисания или сжатия при охлаждении. Пеностекло изготовлено из стекла и имеет коэффициент температурного линейного расширения, сопоставимый с коэффициентом температурного линейного расширения материалов, из которых состоят классические несущие конструкции: бетон, сталь, кладка из керамического или силикатного кирпича. Эта близость значений гарантирует стабильность размеров пеностекла, уложенного или смонтированного на стальную или бетонную конструкцию. Устойчивость физических параметров Пеностекло представляет собой материал, состоящий из герметично замкнутых гексагональных и сферических ячеек. Такая структура материала исключает взаимодействие газовой среды ячеек с атмосферой и обуславливает неизменность во времени характеристик материала.

То есть, во время эксплуатации не происходит изменения таких параметров блоков из пеностекла, как теплопроводность, прочность, стойкость, форма и т. д. Фактор сохранения свойств теплоизоляционного материала с течением времени особенно важен при эксплуатации зданий и сооружений ввиду недоступности материала после завершения работ. На территории бывшего СССР, а также в Европе и Северной Америке пеностекло использовалось в качестве утеплителя более 50 лет. Натурные обследования, результаты лабораторных испытаний, замеры физико-технических параметров блоков из пеностекла, взятых из строительных конструкций со сроком эксплуатации, исчисляемым 40-50 годами, показали, что характеристики пеностекла практически не изменились, т. к. результаты измерений совпали с первоначальными значениями. Актуальность сохранения первоначальных значений параметров утеплителя во время эксплуатации здания и сооружения имеет в современном строительстве первостепенное значение, как по причине повышенных требований заказчиков и потребителей, предъявляемых к эксплутационным качествам всего здания или сооружения, гарантии их неизменности во времени, так и архитектурного усложнения конструкций здания, где затраты на капитальный ремонт и замену утратившего свои свойства утеплителя сопоставимы с затратами на возведение и постройку. Устойчивость к химическому и биологическому воздействию Стекло, из которого на 100% состоит пеностекло, не разрушается химическими реагентами (за исключением плавиковой кислоты), не является питательной средой для грибка, плесени и микроорганизмов, не повреждается корнями растений, абсолютно "непроходимо" для насекомых и грызунов и представляет собой идеальный барьер для подобных вредителей.

Пеностекло - уникальный, состоящий на 100% из стеклянных ячеек материал, было создано в 30-е годы прошлого столетия: в СССР (МХТИ им. Д. И. Менделеева, Москва) и в США - в начале сороковых годов фирмой "Corning Glass Work". Вначале предполагалось применять пеностекло в качестве плавающего материала. Но вскоре выяснилось, что оно обладает еще и высокими тепло и звукоизоляционными свойствами, легко подвергается механической обработке и склеиванию. Впервые бетонные плиты с теплоизоляционной прослойкой из пеностекла были применены в 1946 г. при строительстве одного из зданий в Канаде. Этот опыт оказался настолько удачным, что материал сразу же получил всеобщее признание как долговечная изоляция для кровли, перегородок, стен и полов для всех видов построек.

Уникальные свойства пеностекла в значительной степени обусловлены как химическим составом конечного продукта (на 100% совпадающем с составом обычного посудного, бутылочного или оконного стекла), так и термическим процессом вспенивания и отжига. Алгоритм технологического процесса, вкратце выглядит следующим образом.

Стеклянный гранулят и стеклянный бой размалывают, используя шаровые мельницы в смеси с газообразователем (каменный уголь) в тонкий порошок загружают в формы из жароупорной стали с каолиновой обмазкой. Формы на вагонетках и по роликовому конвейеру подают в туннельную печь. Под действием высокой температуры происходит размягчение частиц стеклянного порошка и его спекание. Газы, выделяющиеся при сгорании и разложении газообразователя, вспучивают вязкую стекломассу. При охлаждении образуется материал с ячеистой структурой. Медленное охлаждение (отжиг) способствует равномерному остыванию изделий по объему, поэтому в них не возникают внутренние напряжения и не образуется трещин. Охлажденные изделия распиливают, оправляют на опиловочном оборудовании и упаковывают.

В результате данных этапов производства и получаются блоки из пеностекла. Химический состав пеностекла на 100% совпадает с химическим составом классического стекла и включает в себя оксиды кремния, кальция, натрия, магния, алюминия.

Газовая среда полностью замкнутых стеклянных ячеек не взаимодействует с атмосферой и представляет собой, в основном, оксиды и соединения углерода. Давление газовой среды в ячейках на порядок ниже атмосферного давления, т. к. процесс вспенивания происходит за счет выделения газов коксом, антрацитом и сажей при температуре порядка 1000°С. Благодаря газообразованию и вспениванию стекла объем стекла увеличивается в 15 раз.

Сотовая структура пеностекла, где стенки и узлы ячеек состоят из такого прочного материала, как стекло, обусловили уникальную прочность пеностекла и способность противостоять механическим нагрузкам. Матрица узлов и связей структуры пеностекла представляет собой наиболее оптимальную пространственно-объемную конфигурацию, способную при минимальной плотности выдерживать максимальные нагрузки. Основные параметры ячейки пеностекла характеризуются следующими показателями: при среднем диаметре ячейки 2 000 мкм толщина стенок ячеек варьируется в интервале от 20 до 100 мкм.

Похожие статьи




Криволинейные поверхности. - Пеностекло и его особенности

Предыдущая | Следующая