Анализ и настройка сети протокола KNX - Проектирование автоматизированной системы управления зданием

Для связи всех устройств для автоматизации здания необходимо их подключить к общему каналу связи - шине KNX. С помощью шины устройства системы могут обмениваться телеграммами (пакетами) для передачи информации. Если передача и прием прошли успешно, то устройство-приемник, которому предназначалось сообщение подтверждает получение телеграммы. В случае отсутствия подтверждения устройство-передатчик повторяет отправку сообщения еще два раза. Если и в этом случае подтверждение не приходит, то процесс передачи данных прерывается. Таким образом, протокол KNX является протоколом с "обратной связью". В каждый момент времени может быть отправлена только одна телеграмма. Примерная структура сети KNX показана на рисунке 1.

структура подключения устройств к шине knx

Рис. 1. Структура подключения устройств к шине KNX

Протокол KNX может использовать различные среды для передачи данных [7]:

    - KNX/TP - витая пара со скоростью передачи данных 9600 бит/с; - KNX/PL - силовая линия (230 В и 50 Гц) со скоростью передачи данных 1200 бит/с; - KNX/RF - радиоканал, имеющий два частотных окна 868 и 433 МГц; - KNX/IP - сеть Ethernet.

В рамках дипломной работы в качестве среды передачи данных используется витая пара (KNX/TP). Данный метод организации системы домашней автоматики на базе KNX является наиболее распространенным и актуальным, так как такие системы просты для планирования и разработки и позволяют создать функциональные и гибкие решения, удовлетворяющие требованиям заказчика. Кабель витой пары может прокладываться поверхностным (контрольные панели) или скрытым (радио-модули) монтажом. Благодаря большим возможностям настройки и программирования, стандарт KNX является удобным как для разработчика, так и для конечного пользователя. Кабель витой пары, состоящей из красной (+) и черной (-) пары проводов, можно использовать как для передачи телеграмм, так и для подачи питания устройств.

Для того, чтобы система начала работать недостаточно просто соединить кабелем все устройства и подключить к питанию. Необходимо настроить и запрограммировать устройства, используя специальное программное обеспечение ETS Professional.

Engineering Tool Software (ETS) - специальное программа для проектирования, конфигурации и диагностики интеллектуальных систем на базе стандарта KNX. ETS возможно использовать для настройки многих инженерных систем:

    - Управление освещением (включение/выключение, диммирование); - Управление шторами; - Система микроклимата (отопление, вентиляция, кондиционирование); - Безопасность (сигнализация, видеонаблюдение, защита от протечек) - Управление энергией; - И др.

Существует несколько способов настройки устройств:

    1) В S-режиме (system) - шинные устройства становятся функциональными после загрузки в универсальный блок сопряжения с шиной определенной аппликационной программы, индивидуальной для каждого устройства. В данном режиме у инсталлятора есть полный доступ к программированию и настройке всех параметров устройств. Наиболее часто используемая конфигурация для систем KNX. 2) Е-режим (easy) - исполнительные устройства уже являются полностью функциональными на момент подключения к шине KNX, программа загружается в блок сопряжения уже при изготовлении устройства. Логическая связь между такими KNX-устройствами и установка соответствующих параметров выполняется аппаратно, либо через контроллер, причем большинство настроек уже выставлено по умолчанию. 3) В А-режиме (auto) происходит автоматическая упрощенная настройка устройств при их подключении к центральному блоку управления. В последних спецификациях протокола KNX не используется.

Для инсталляции KNX у каждого устройства в сети должен быть индивидуальный уникальный физический адрес. Назначение адреса можно произвести с помощью ETS. Для этого необходимо перевести устройство в программный режим (например, нажатием на программную кнопку на корпусе). Для подтверждения режима программирования должен загореться светодиод. Физический адрес устройств имеет следующую структуру: Зона. Линия. Устройство (например, адрес 1.3.4 определяет четвертое устройство в третьей линии первой зоны). Для физического адреса зарезервировано 16 бит информации. На рисунке 2 представлено распределение битов.

распределение битов в физическом адресе устройства

Рис. 2. Распределение битов в физическом адресе устройства

Далее необходимо выбрать аппликационные программы для каждого устройства и настроить различные параметры, исходя из требований проекта. После создается структура из групповых адресов (как правило для сложных инсталляций, трехуровневая - главная группа/средняя группа/подгруппа, например, 1/1/1), и в данных групповых адресах объединяются различные объекты связи устройств, участвующих в инсталляции (например, датчик связывается с исполнительным логическим модулем). Трехуровневая система групповых адресов использует 4 бита информации для главной группы, 3 бита для средней и 8 бит для подгруппы. Таким образом, можно использовать максимально 16 главных групп (0-15), 8 средних (0-7) и 256 подгрупп (0-255).

Пример использования:

    1/1/1 - Лампа в спальне 1/1/2 - Торшер в спальне 1/2/1 - Люстра в гостиной 1/2/2 - Настольная лампа в гостиной 2/1/1 - Обогреватель в спальне

Необходимо учитывать, что получателями телеграмм могут быть несколько исполнительных устройств, но при этом сенсоры могут отправлять сигналы с информацией только по одному физическому адресу.

У каждого устройства есть несколько объектов связи. Их количество отличается в зависимости от назначения. Объекты связи могут иметь различный размер от 1 бита до 14 байт. Размер объекта зависит от выполняемой функции (например, 1-битовый объект используется для включения/выключения, а 4-битовый для диммирования).

Для наглядности рассмотрим следующий пример функционирования настроенной системы. Одноклавишный выключатель привязан к физическому адресу (1.1.1). Если нажать на кнопку выключателя и переключить его в положение "Включено", то отправится телеграмма с групповым адресом 4/2/3, которая содержит значение "1" и определенную служебную и контрольную информацию. Далее все устройства, находящиеся в общей сети KNX, получают данную телеграмму и обрабатывают ее, но только устройства с групповым адресом 4/2/3 отправляют контрольную телеграмму о подтверждении получения информации, после считывают значение "1" и обрабатывают его (например, исполнительное устройство с физическим адресом 1.1.2 замкнет реле, и лампа включится).

Как было сказано выше, передача данных по KNX/TP осуществляется с помощью кабеля витой пары. Шинные устройства подключаются к шине посредством универсального клеммника (рис. 3).

шинный клеммник knx wago 243-211

Рис. 3. Шинный клеммник KNX WAGO 243-211

При каком-либо произошедшем событии происходит отправка телеграммы (например, пользователь нажал на кнопку). Если шина не занята некоторое время t1, то происходит передача данных. После отправки телеграммы должно пройти некоторое время t2, через которое происходит подтверждение получения от устройства, которому предназначалось сообщение. Общая схема отправления представлена на рисунке 4.

схема отправки телеграммы

Рис. 4. Схема отправки телеграммы

Каждая отправленная телеграмма состоит из набора служебных данных, определенного протоколом и полезной информации, которая описывает происшедшее событие (например, нажатие клавиши). Информация в телеграмме состоит из пакетов по 8 байт. Существуют определенные старт - и стоп - биты для определения начала и конца сообщения. Контрольная информация позволяет обнаружить ошибки в ходе передачи данных. На рисунке 5 представлена структура телеграммы.

структура телеграммы

Рис. 5. Структура телеграммы

Для передачи информационного сигнала используется модулирование напряжения, а точнее сообщение передается в виде импульса, который представляет собой разность напряжений, которая возникает между проводами витой пары среды передачи данных KNX/TP. Отсутствие импульса (разность потенциалов номинально равна 24 В) означает логическую "1". Отправка импульса с примерной амплитудой ±6 В означает логический "0".

Для того, чтобы передача данных осуществлялась с минимальными ошибками и задержками необходимо соблюдать определенные требования для создания сети (рис. 6) [8]:

    - Максимальная длина линии должна быть не более 1000 м; - Максимальная длина кабеля, протянутого между двумя устройствами в сети должна не превышать 700 м; - Минимальная длина кабеля, протянутого между двумя источниками питания должна составлять 200 м.
требования к длине сети

Рис. 6. Требования к длине сети

При проектировании системы необходимо уделить внимание количеству шинных устройств, используемых в сети и выбрать необходимую топологию (способ соединения всех элементов между собой). Стандарт KNX поддерживает большинство известных топологий за исключением "кольца" и имеет следующую структуру: устройства соединяются в линию, несколько линий соединяются в зону и несколько зон объединяются через системную линию (рис. 7).

пример топология шины knx

Рис. 7. Пример топология шины KNX

Например, зоной является этаж здания, а линиями - комнаты на этаже. Каждая линия может включать максимум 4 сегмента, каждый из которых, в свою очередь, может состоять из 64 различных устройств. При этом необходимо учитывать, что каждому сегменту необходим отдельный источник питания. Для соединения сегментов в линии, а также соединения линий в зону используется линейный повторитель. Это помогает распределить нагрузку в шине. Таким образом, в системе можно объединить между собой более 58000 устройств.

Похожие статьи




Анализ и настройка сети протокола KNX - Проектирование автоматизированной системы управления зданием

Предыдущая | Следующая