Трансляция - Биосинтез белков. Ген и его роль в синтезе белков

Трансляция - важная составная часть общего метаболизма, и ее сущность заключается в переводе генетической информации с мРНК, являющейся первичным продуктом действия генов, в аминокислотную последовательность белков. Трансляция происходит в цитоплазме на рибосомах и представляет собой очень сложный, но центральный процесс в синтезе белков, в котором помимо рибосом участвуют мРНК, 3-5 молекул рРНК, 40-60 молекул разных тРНК, аминокислоты, около 20 ферментов (аминоацил-тРНК синтетаз), активирующих аминокислоты, растворимые белки, вовлекаемые в инициацию, элонгацию и терминацию полипептидной цепи.

трансляция

Рис.1 Трансляция

Первый этап трансляции происходит в цитоплазме и заключается в комбинировании каждой аминокислоты с АТФ и специфическим ферментом аминоацил-тРНК-синтетазой. В результате этого устанавливается связь между фосфатом и карбоксильной группой аминокислоты (-Р-О-С), которая приводит к образованию комплексов, состоящих из аминокислоты, АМФ и специфического фермента. Пирофосфаты в процессе образования этих комплексов удаляются.

Второй этап трансляции осуществляется также в цитоплазме. Поскольку аминоацил-тРНК-синтетазы распознают аминокислоты и их тРНК, то второй этап состоит во взаимодействии образованных комплексов аминокислота-АМФ-специфический фермент (аминоацил-тРНК-синтетаза) со специфическими тРНК (один комплекс - одна тРНК). Поскольку цепи всех тРНК имеют одинаковую структуру концов (конечное основание - аденин, а два предыдущих - цитозин и цитозин), то связывание одной аминокислоты со специфической тРНК происходит путем установления связи между рибозой конечного нуклеотида (адениловой кислоты) и карбоксильной группой аминокислоты (-С-О-С-). Вследствие этого взаимодействия происходит формирование так называемых аминоацил-тРНК, представляющих собой комплексы аминокислоты со специфической тРНК, и освобождение в процессе образования этих комплексов АМФ и фермента (аминоацил-тРНК-синтетазы). Следовательно, аминоацил-тРНК являются прямыми предшественниками полипептидного синтеза на рибосомах.

продолжение трансляции

Рис. 2 Продолжение трансляции

Осуществление этих двух этапов приводит к активации аминокислот. Одни синтетазы активируют 2' - гидроксил конечного основания тРНК, тогда как другие активируют З' - гидроксил, а некоторые активируют и 2'- и 3'-гидроксилы. Однако эти различия не имеют значения, поскольку после освобождения аминоациальная группа на тРНК мигрирует взад и вперед.

Третий этап трансляции и заключается в декодировании мРНК. Он осуществляется на рибосомах и в нем участвуют как мРНК, так и различные аминоацил-тРНК. После того как мРНК отошла от ДНК и прошла через ядерную мембрану в цитоплазму, она прикрепляется к РНК-последовательности, меньшей 30 S-субъединицы рибосомы. Последовательность мРНК, которая связывается с последовательностью рРНК рибосомной субъединицы 30 S, получила название рибосомосвязывающего сайта или последовательности Шайно - Дальгарно. Между тем каждая рибосома имеет два сайта, связывающих тРНК. СайтА, или аминоацильный (акцепторный) сайт, связывает приходящую аминоацил-тРНК, которая несет аминокислоту, предназначенную для добавления в растущую полипептидную цепь рядом с ранее добавленной аминокислотой. СайтР, или пептидный (донорный) сайт, связывает пептидил-тРНК, к которой прикреплен растущий полипептид. Специфичность связывания аминоацил-тРНК в этих сайтах обеспечивается кодонами мРНК, которые составляют часть сайтовА и Р. Это связывание происходит благодаря водородным связям, устанавливаемым между определенными основаниями (антикодоном) каждой аминоацил-тРНК и основанием (кодоном) соответствующей последовательности мРНК. Первое и второе основания кодона всегда спариваются с третьим и вторым (соответственно) основаниями антикодона, тогда как третье основание кодона, если оно является урацилом, спаривается с гуанином или гипоксан-тином антикодона, если же оно является аденином - то с гипоксан-тином антикодона, а если гуанином - то с урацилом антикодона. Как уже отмечено, в обеспечении взаимодействия мРНК с тРНК участвует рРНК 16 S.

После связывания с мРНК аминоацил-тРНК помещают (включают) аминокислоты вдоль молекулы мРНК и последовательности, соответствующей последовательности триплетов азотистых оснований в мРНК. Наращивание полипептидной цепи обеспечивается тем, что при синтезе белка рибосомы (полисомы) движутся вдоль цепи мРНК. Одновременно происходит формирование пептидных связей, обеспечиваемое несколькими ферментами-трансферазами, один из которых катализирует одновременно связывание аминоацил-тРНК с рибосомой, происходящее в присутствии ГТФ как кофактора. Каждая пептидная связь образуется ковалентным связыванием атома углерода карбоксильной группы первой аминокислоты с аминогруппой второй аминокислоты. При этом в процессе связывания происходит открепление тРНК первой аминокислоты от углерода карбоксильной группы своей аминокислоты. Каждая вновь добавляемая аминокислота встает на место, следующее за аминокислотой, добавленной ранее. Как видно, полипептидная цепь наращивается с карбоксильного конца, а аминокислоты добавляются последовательно. Трансляция осуществляется в направлении от 5' - к 3' - концу полипептидного типа.

ТРНК характеризуются исключительно высокой специфичностью, что проявляется в их антикодоновых последовательностях, соответствующих кодонам, доступности для распознания нужной аминоацил-тРНК-синтетазой и в точности связывания с сайтамиАиРна рибосомах.

Инициация, элонгация и терминация полипептидного синтеза находятся под генетическим контролем.

Инициация полипептидной цепи начинается с образования комплекса между мРНК, формилметионин-тРНК и рибосомной единицей 30 S, которое обеспечивается факторами (белками) инициации, а также ГТФ. Этот комплекс вступает в комбинацию с 50S-рибосомной единицей, в результате чего формилметионин-тРНК становится связанной с пептидиловым сайтом. Энергия для этого обеспечивается гидролизом одной молекулы ГТФ. Кодоны АУГ, ГУА и ГУГ на 5' - конце или рядом с ним направляют включениеV-формилметионина в качествеV-концевой аминокислоты белка. Можно сказать, что эти кодоны являются специфическими инициаторами белкового синтеза. Наиболее активен кодон АУГ.

инициация белкового синтеза

Рис.3 Инициация белкового синтеза

Элонгация (удлинение) полипептидной цепи обеспечивается факторами элонгации, а также гидролизом одной молекулы АТФ, а движение молекулы мРНК с одного сайта рибосомы на другой обеспечивается фактором элонгацииEF-Gи гидролизом одной молекулы ГТФ. Каждый раз мРНК движется на три нуклеотида. У бактерий частота элонгации составляет 16 аминокислот в секунду. Это означает, что рибосомы движутся вдоль мРНК со скоростью 48 нуклеотидов в секунду.

Терминация (окончание) синтеза детерминируется стоп-кодонами УАГ, УАА и УГА. Когда один из этих кодонов подойдет к А-сайту рибосомы, то полипептид, тРНК в Р-сайте и мРНК освободятся, а рибосомные субъединицы диссоциируют. Окончание синтеза белка связано с активностью белковых факторов - освобождения. Диссоциировав, рибосомные субъединицы начинают трансляцию другой молекулы мРНК. Большинство мРНК симультанно транслируется несколькими рибосомами (полисомами). Например, цепь гемоглобина из 150 аминокислот синтезируется на пентарибо-сомном комплексе. У прокариотов синтез и трансляция мРНК происходят в направлении от 5'-конца к 3'-концу. Далее, у них нет ядерной мембраны. Поэтому трансляция мРНК начинается еще до завершения ее синтеза. Напротив, у эукариотов транскрипция и трансляция разделены во времени, поскольку требуется время для перехода мРНК из ядра через ядерную мембрану в цитоплазму.

фаза элонгации в синтезе белка

Рис. 4 Фаза элонгации в синтезе белка: 1-й этап--аминоацил-тРНК присоединяется к кодону, расположенному в А-участке; 2-й этап -- между аминокислотами, расположенными в А - и П-участках, образуется пептидиая связь: тРНК, расположенная в П-участке, освобождается от своей аминокислоты и покидает рибосому; 3-й этап --рибосома перемещается по мРНК на один кодон так, что тРНК, нагруженная пептидной цепочкой, переходит из А-участка в П-участок; свободный А-участок может быть занят соответствующей аминоацил-Трнк

терминация синтеза пептидной цепи

Рис.5 Терминация синтеза пептидной цепи: 1-й этап -- присоединение фактора освобождения к стоп-кодону; 2-й этап -- терминация, высвобождение завершенного пептида; 3-й этап -- диссоциация рибосомы на две субчастицы

Ген белок прокариота информация

Похожие статьи




Трансляция - Биосинтез белков. Ген и его роль в синтезе белков

Предыдущая | Следующая