Положения и принципы современной квантовой механики - Квантовая механика

Еще одной очень важной особенностью этой науки, в отличие от классической ньютоновской механики, является невозможность разделить микрообъект и наблюдателя. Вот что писал по этому поводу один из классиков квантовой механики В. Паули:

"Наблюдатель, или средства наблюдения, которые микрофизике приходится принимать во внимание, существенно отличаются от ничем не связанного наблюдателя классической физики... В микрофизике характер законов природы таков, что за любое знание, полученное в результате измерения, приходится расплачиваться утратой другого, дополнительного знания. Поэтому каждое наблюдение представляет собой неконтролируемое возмущение, как средства наблюдения, так и наблюдаемой системы, и нарушает причинную связь предшествовавших ему явлений с явлениями, следующими за ним...

В этой связи в 1927 г. Н. Бор сформулировал принципиальное положение квантовой механики - принцип дополнительности, согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связанно с потерей информации о некоторых других величинах, дополнительных к первым.

Вообще, законы квантовой механики весьма сложны для понимания неподготовленного человека, требуя глубоких знаний физики и математики. Однако основные ее постулаты можно сформулировать, используя вполне доступные для понимания средства:

    1)Любое состояние системы микроскопических частиц описывается некоторой функцией ?(x, t), зависящей от координат и времени и носящей название "волновой". Квадрат модуля этой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме. 2)Предсказания квантовой механики носят статистический характер. Она предсказывает только средние значения большой серии испытаний для одинаково приготовленных систем. 3)Принцип суперпозиции: если в системе могут реализовываться состояния, описываемые волновыми функциями ?1(x, t) и ?2(x, t), то может реализоваться и любая их линейная комбинация c1?1(x, t) + c2?2(x, t), где c1 и c2 некоторые комплексные константы. 4)Результаты экспериментов должны переходить в область классической механики, когда величины размерности этого действия становятся намного больше постоянной Планка h.

Согласно двойственной корпускулярно-волновой природе частиц вещества для описания свойств микрочастиц используются либо волновые, либо корпускулярные представления. Приписать им все свойства частиц и все свойства волн нельзя. Возникает необходимость введения некоторых ограничений в применении к объектам микромира понятий классической механики.

В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координаты и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении микрочастицы по определенной траектории и об одновременных точных значениях ее координат и импульса. Это следует из корпускулярно-волнового дуализма. Так, понятие "длина волны в данной точке" лишено физического смысла, а поскольку импульс выражается через длину волны, то микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным.

В 1927 году Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел к выводу:

Объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой, и импульсом. Согласно соотношению неопределенности Гейзенберга микрочастица (микрообъект) не может иметь одновременно координату х и определенный импульс p, причем неопределенность этих величин удовлетворяет условию ?p ? h/?x

(h - постоянная Планка), т. е. произведение неопределенностей координаты и импульса не может быть меньше постоянной Планка.

Основное уравнение квантовой механики было сформулировано в 1926 году Э. Шредингером. Уравнение Шредингера, как и многое уравнения физики, не выводятся, а постулируются. Правильность уравнения Шредингера подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь придает ему характер закона природы.

Уравнение Шредингера:

-+U (X, y,z)=ih,

Где ; m - масса частицы; - оператор Лапласа (=); i-мнимая единица, U(X, y,z) - потенциальная функция частицы в силовом поле, в котором она движется; - искомая волновая функция частицы.

Уравнение справедливо для любой частицы, движущейся с малой скоростью, т. е. со скоростью <<c. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной; 2) производные должны быть непрерывны; 3) функция || должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей. Уравнение является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени.

Похожие статьи




Положения и принципы современной квантовой механики - Квантовая механика

Предыдущая | Следующая