ОБУЧЕНИЕ. ПАМЯТЬ. ПОВЕДЕНИЕ - Регуляция физиологических процессов

Множество исследований обращено к проблеме контроля нейропептидами и нейротрофическими ростовыми факторами сложных форм нейрогенной активности, таких как обучение, память, пищевое, сексуальное, агрессивное поведение др. Insel &; Young (2000) Обращают внимание на два аспекта исследования нейропептидов в регуляции социального поведения организмов: родовая специфика, характерная для позвоночных, и видовые особенности структуры генов рецепторов, благодаря которым может варьировать локализация (тканевое распределение) рецепторов и тем определяются особенности социального поведения организмов различного иерархического уровня.

Биохимической основой нейрокоммуникации и, следовательно, регуляции процессов памяти и обучения индивидуумов может служить "редоксная теория" Smythies (1999), Рассматривающая причины формирования и удаления возбудимых синапсов и дендритов в нервной ткани. Редокс-статус глутаматных синапсов играет, очевидно, основную роль в определении роста или деградации таких структур.

Память. Обучение. Отмечается роль пептидного фрагмента ангиотензина IY (AT4- рецепторы в гиппокампе), контролирующего процессы обучения и память и влияющего на синаптическую пластичность клеток (Kramar et al, 2001); Описывается роль эндоморфина-2, как модулятора пространственной ориентации при инъекции крысам, реализуемая через мю - рецепторы СА3 региона гиппокапма (Sandin et al, 2000); Отмечается ухудшение навыков обучения у мышей в Y-лабиринте под влиянием нейропептида ноцистатина (Hiramatsu &; Iniue, 1999). Ухудшение пространственной памяти, вызываемой каннабиноидами, сопряжено с торможением рилизинга холецистокинина в нейронах гиппокампа крыс, что было подтверждено в исследованиях на тканевых срезах (Beinfeld &; Conolly, 2001).

Выявлено участие пептида орфанина PQ (ноцицептина) в процессах обучения, осуществляемое через ORL-1 рецепторы дорзального гиппокампа у крыс (Sandin et al. 2004). Механизм реализуется при соучастии NMDA рецепторов (Mamiya et al. 2003).

С гиппокампальными структурами связано влияние гормонов на память. Обзор Lathe (2001) Рассматривает влияние на гиппокамп факторов целостной системы гипоталамо - гипофизарной оси и связывает ее с регуляцией артериального давления, иммунных ответов, репродуктивной функции. В этом контексте следует отметить роль вазопрессина в регуляции процессов пространственного обучения, социальной дифференцировки и реакции страха у крыс. Вводимые в латеральную перегородку мозга микродозы антагониста вазопрессина вызывали описанный комплекс реакций (Everts, Koolhaas, 1999). Icv инъекция ангиотензина IY (фрагмента [3- 8]ангиотензина II) улучшала показатели пассивного избегания и пространственного обучения у крыс. Поскольку рецепторы ангиотензина IY и холинергические нейроны тесно ассоциированы в гиппокампе и неокортексе, структурах ответственных за мнестические реакции, постулировано стимулирующее влияние ангиотензина на регуляцию когнитивных процессов (Lee et al, 2001).

Исследования новых нейропептидов показывают, что интрацистернальное введение Глюкагонподобного пептида (GLP-1, см раздел II) существенно повышает ассоциативную и пространственную память животных. У мышей с дефицитом рецептора GLP-1R отмечено снижение обучательных навыков, которые реконструируются введением в гиппокамп Glp1r генного трансфера. Кроме того, дефицит рецептора GLP-1R снижает порог судорожной активности и нейронального повреждения, вызываемого каиновой кислотой (During et al, 2003).

Ряд публикаций свидетельствует об участии Нейротрофических ростовых факторов В реакциях обучения у животных. BDNF, предполагаемый модулятор синаптической передачи и стимулятор высвобождения нейротрансмиттеров, влиял на реакции пассивного избегания у 1- суточных цыплят. Icv инъекции антител к нейротрофину приводили к временной амнезии. Эксперименты с препаратами синаптосом позволили определить регионарные особенности влияния ростовых факторов на биохимические процессы, связанные с формированием памяти (Johnston et al, 1999). Фактор роста нервов (NGF) участвует в стимуляции обучательных навыков у гетерозиготных мышей. Выявлены различия в трансфекции NGF в клетках гиппокампа, и эти особенности оказываются существенными для коррекции полипептидом дефицита пространственного обучения (Brooks et al, 2000). Облегчение реакций запоминания стимулировалось препаратом PG-9, влияющим на рилизинг ацетилхолина, который потенцировал эндогенный синтез NGF.

Регуляция сна и циркадных процессов. Нейропептиды, как и ростовые факторы, влияют на ритмическую деятельность организма. Будучи частью целостной системы химической регуляции, нейропептиды и ростовые факторы играют роль в управлении суточной активностью, процессами сна, различными формами мотивационного поведения. NGF и BDNF, упоминавшиеся ранее как регуляторы консолидации памяти и обучения, имеют также отношение к регуляции REM - фазы сна. При экспериментальном нарушении сна у крыс определяли изменения уровня указанных ростовых факторов. Данные показали регионарно-сопряженное снижение содержания BDNF в мозжечке и в стволовой части и NGF в гиппокампе (Sei et al, 2000). При исследовании влияния Глиального нейротрофического фактора (GDNF) (icv аппликации крысам и кроликам) на различные фазы сна выявлено увеличение времени истощения медленной фазы у обоих видов животных; при этом не было обнаружено влияния GDNF на активность ЭЭГ (Kushikata et al, 2001).

Ряд нейропептидов (нейротензин, VIP) и гормон вазопрессин, обнаруживаемые в супраоптическом ядре, участвуют в регуляции "биологических часов" здорового организма. Однако у больных гипертонией уровень этих регуляторов снижен вдвое, что объясняет нарушения суточной динамики у таких пациентов. (Иммунохимические исследования на постмортальном материале; Goncharuk et al, 2001). Идентифицируемые в нейронах супраоптического ядра рецепторы нейротензина и эксперименты с антагонистами этих рецепторов указывают на участие пептида в регуляции циркадной активности гипоталамуса (Coogan et al, 2001).

Питьевое и пищевое поведение. Велик объем работ о роли нейропептидов в регуляции пищевого поведения. В энергетическом балансе существенную роль играют гормональные сигналы, исходящие из жировой ткани, и их влияние на мозговые регионы, контролирующие соотношение потребительного и расходного обменов. Важное место принадлежит лептину, пептиду, кодируемому ОВ-геном, а также нейропептиду Y (Wang J. et al, 2001; Schwartz et al, 1996; Erickson et al, 1996). Лептин, воздействуя на гипоталамус, обусловливает измененную экспрессию ключевых генов регуляторных пептидов. Однако в условиях дефицита NPY у мышей линии ОВ/ОВ отмечается сниженная пищевая мотивация, что свидетельствует о ведущей роли NPY в качестве эффектора лептина (Erickson et al, 1996). NPY посвящено значительное число публикаций. Уровень этого пептида в гипоталамусе определяет соотношение активности серотонин - и катехоламинергических нейронов, которое имеет первостепенную значимость в контроле энергетической и терморегуляторной функций (Myers et al, 1996). Инъекция NPY в паравентрикулярное ядро гипоталамуса стимулировало аппетит. Болюсная инъкция NPY вызывала секрецию инсулина и потенцировала инсулиновую гипергликемию (Marks, Waite, 1996). Роль NPY в центральном контроле пищевой мотивации была подтверждена использованием антагониста рецептора Y1, 1229U91 (Kanatani et al, 1996). Вместе с NPY в регуляции пищевого поведения участвуют галанин и гормон роста. Функция NPY связана с кальмодулин-зависимой протеинкиназой II и увеличенной активностью циклической АМФ (Sheriff et al, 1997).

Первичные исследования нового пептида жрелина (Ghrelin, см. раздел II) выявляют довольно большой спектр его физиологической активности. Однако, в первую очередь, следует говорить о новом регуляторе пищевой активности, тучности и связанных с ними патофизиологических явлений. Сравнительные иследования изменений уровня жрелина, лептина, Инсулинового ростового фактора и гормона роста позволяют считать, что жрелина является хорошим маркером нутритивного статуса и уровня энергетического баланса в организме (Soriano - Guillen et al, 2004; Hosoda et al, 2002; Ukkola, 2004).

Публиковавшиеся ранее факты о влиянии ангиотензина II на питьевое поведение дополняются сведениями о взаимосвязи этого пептида с другими химическими регуляторами, экспрессируемыми в мозге. Стимуляция субфорникального органа ангиотензином способствует рилизингу вазопрессина в структурах гипоталамуса, что стимулирует дипсогенную реакцию животного. Инъекция AII в субфорникальный орган активирует Fos-иммунореактивность в AV3V регионе и в вазопрессиновых нейронах супраоптического и паравентрикулярного ядер. Таким образом, подтверждается взаимосвязь вазопрессиновой и ангиотензиновой систем в контроле питьевого поведения (Xu, Jiang,1999).

Дипсогенная активность ангиотензина II связывается с атриальным натрийуретическим пептидом (ANP). Инъекция AII в третий желудочек мозга (AV3V), ведущая к усилению питьевой потребности, увеличивает также уровень ANP в крови и этот эффект тормозится агонистом альфа - адренорецепторов; при этом меняется содержание ANP в обонятельной луковице, среднем гипоталамусе и срединном возвышении (Bastos et al, 2001). Экспрессия мРНК С - натрийуретического пептида в обонятельной луковице наблюдается в условиях питьевого ограничения и солевой нагрузки. Icv инъекция AII (500 ng) увеличивает потребление воды

Животным и стимулирует экспрессию С-натрийуретического пептида, однако только в обонятельной луковице (Cameron et al, 2001). Таким образом, прослеживается взаимодействие AII и ряда других пептидов в регуляции питьевого поведения, приуроченное к определенным регионам мозга. Участие AII в регуляции дипсогенных реакций ассоциируется также с влиянием этого пептида на терморегуляцию взрослых крыс (Katovich et al, 2001).

Ряд работ описывает влияние Фактора роста фибробластов (FGF-1) на стимуляцию пищевой активности. Icv инфузия фактора тормозит не только стремление к потреблению пищи, но и локомоторную активность крыс (Hotta et al, 2001); Это действие FGF-1 сопряжено с активацией Fos-белка в перивентрикулярных астроцитах гипоталамуса (Suzuki, 2001).

Похожие статьи




ОБУЧЕНИЕ. ПАМЯТЬ. ПОВЕДЕНИЕ - Регуляция физиологических процессов

Предыдущая | Следующая