Этапы биосинтеза белка, Транскрипция - Биосинтез белков. Ген и его роль в синтезе белков

Транскрипция

Мост между геном (кодонами) и белком обеспечивается РНК. Точнее, информация, закодированная в последовательности азотистых оснований ДНК, вначале переносится от ДНК к матричной РНК (мРНК). Этот этап переноса информации носит название транскрипции и происходит у прокариотов в нуклеоиде, а у эукариотов - в ядре.

Транскрипция - первый этап в передаче генетической информации, сущность которого заключается в синтезе мРНК, т. е. в "переписывании" генетической информации в молекулы мРНК. Основными структурами, которые участвуют в транскрипции, являются ДНК-матрица (цепь ДНК), РНК-полимераза и хромосомные белки (гистоновые и негистоновые). Однако наряду с молекулами мРНК с ДНК транскрибируются молекулы РНК и других видов (рибосомная и транспортная), также имеющие важное значение в реализации генетической информации. Все эти РНК называются еще ядерными. Размеры транскрибируемых молекул РНК зависят от посылаемых с цепи ДНК-шаблона сигналов начала и остановки синтеза (кодонов инициации и терминации). Наиболее обильными РНК в клетках всех видов являются молекулы рибосомной РНК (рРНК), которые выполняют роль структурных компонентов рибосом. У эукариот синтез рРНК контролируется огромным количеством генов (сотни копий) и происходит в ядрышке.

В клетках человека гены для рРНК локализованы на 13, 14, 15, 21 и 22-й парах хромосом. Молекулы рРНК являются продуктами процессинга первичных транскриптов (про-рРНК). В меньших количествах в клетках обнаруживаются молекулы транспортных РНК (тРНК), которые участвуют в декодировании информации (трасляции). Молекулы мРНК составляют около 3% общей клеточной РНК, они очень нестабильны. Период их полужизни необычайно краток у прокариотов, составляя 2-10 минут. У эукариотов время полужизни молекул мРНК составляет несколько часов или даже несколько недель. У прокариотов молекулы мРНК - непосредственные продукты транскрипции. Напротив, у эукариотов они являются продуктами процессинга первичных РНК-транскриптов.

Синтез молекул мРНК происходит в ядре клетки, откуда через ядерную мембрану они проходят в цитоплазму к рибосомам. Он очень сходен с репликацией ДНК. Отличие заключается лишь в том, что в качестве матрицы (шаблона) для копирования цепи мРНК используется только одна цепь ДНК. При этом копирование мРНК может начаться с любого пункта одиночной цепи ДНК. Важно подчеркнуть, что какой-либо ген транскрибируется лишь с одной цепи. В то же время два даже соседних гена могут транскрибироваться с разных цепей. Таким образом, для транскрипции может использоваться любая из двух цепей ДНК. Одна из цепей транскрибируется одними РНК-полимеразами, другая - другими РНК-полимеразами. Поскольку обе цепи ДНК имеют противоположную полярность, то транскрипция на каждой из цепей проходит в противоположных направлениях. Цепь, которая содержит те же последовательности, что и мРНК, называют кодирующей, а цепь, обеспечивающую синтез мРНК (на основе комплементарного спаривания), - антикодирующей. Из-за считывания кода с мРНК для его записи используют основания А, Г, У, Ц.

В меньших количествах в клетках обнаруживаются молекулы транспортных РНК (тРНК), которые участвуют в декодировании информации (трансляции). Молекулы тРНК также являются продуктами процессинга первичных транскриптов. Существенной особенностью тРНК служит свернутый характер их вторичной структуры, которая имеет форму клеверного листа.

Все РНК транскрибируются с ДНК, которая несет множественные копии соответствующих генов. Механизм синтеза РНК сходен с механизмом репликации ДНК. Непосредственными предшественниками в синтезе РНК являются рибонуклеозидтрифосфаты, причем здесь действует то же правило спаривания оснований, за исключением того, что кодируются лишь ограниченные сегменты цепи ДНК и что тимин в ДНК заменяется на урацил. Урацил спаривается с аденином таким же образом, как и тимин. Цепь РНК растет в направлении от 5'- к 3'-концу с освобождением пирофосфата.

Синтез РНК обеспечивается РНК-полимеразами. У прокариот синтез мРНК, рРНК и тРНК осуществляет лишь один тип РНК-полимеразы, количество молекул которой в клетках достигает 3000. Каждая из молекул этой РНК-полимеразы состоит из шести полипептидов, какими являются субъединицы в и в' (молекулярная масса 155 000 и 151 000 соответственно), двух субъединиц б (36 000) и еще двух низкомолекулярных субъединиц д ищ, инициация транскрипции обеспечивается комплексом полимераза + белки(около шести белковых комплексов). Связывание РНК-полимеразы с ДНК происходит на участке, называемом промотором.

УЕ. coliпромоторы содержат последовательность ТАТААТ (бокс Прибнау), а контролируются белковым фактором. Напротив, в клетках эукариот существуют три РНК-полимеразы, представляющие собой сложные молекулы, содержащие от одной до нескольких полипептидных цепей. Каждая из этих РНК-полимераз, прикрепляясь к промотору на ДНК, обеспечивает транскрипцию разных последовательностей ДНК. РНК-полимераза I синтезирует рибосомальную РНК (основные молекулы РНК больших и малых субъединиц рибосом). РНК-полимераза II синтезирует все мРНК и часть малых рРНК, РНК-полимераза III синтезирует тРНК и РНК 5S'-субъединиц рибосом.

Эукариотические РНК-полимеразы также характеризуются сложным строением. РНК-полимераза II многих организмов построена из 12 различных полипептидов, три из которых гомологичны субъединицам в', в и б РНК-полимеразы из E. coli, РНК-полимеразы I и III обладают 5 субъединицами, сходными с субъединицами РНК-полимеразы II. РНК-полимераза II инициирует транскрипцию, причем для этого требуется белок ДНК-геликаза, детерминируемая у дрожжей геном RA 25, а у человека - геном XRB. Как отмечено выше, транскрипция у эукариот - более сложный процесс по сравнению с прокариотами. мРНК эукариотов образуется в ядре из первичных генных транскриптов длиной 1000-500 000 пар оснований в результате процессинга. Другими словами, формируемые первичные транскрипты (про-мРНК) не на всем протяжении способны к трансляции. Для того чтобы про-мРНК стала "зрелой" мРНК, которая полностью транслируется, она еще в ядре вовлекается в процессинг, который заключается в том, что из про-мРНК "вырезают" нетранслируемые участки (интроны), после чего транслируемые участки (эксоны) воссоединяются (сплайсинг - процессинг).

В результате образуются непрерывные последовательности, т. е. молекулы "зрелой" мРНК, которые по своим размерам значительно меньше молекул про-мРНК. Биологические механизмы сплайсинга определяются участием в этом процессе малых ядерных рибону-клеопротеиновых частиц, которые концентрируются в интерфазном ядре совместно с рибонуклеопротеидными факторами сплайсинга. Внутриклеточное распределение факторов сплайсинга контролируется одной из киназ. Четыре реакции процессинга РНК катализируются РНК-энзимами (рибозимами). Помимо модификации ядерной про-мРНК путем "вырезания" и сплайсинга ее сегментов, изредко имеет место так называемое "редактирование" РНК, которое заключается в конверсии одного основания в другое.

Например, в клетках печени синтезируемый белок аполидопротеин имеет молекулярную массу порядка 242 000 дальтон. Это результат конверсии в кодирующем гене цитозина в урацил (в клетках кишечника), что ведет к образованию стоп-кодона и, следовательно, более короткого белка. Наконец, возможна модификация РНК и путем посттранскрипционного добавления к 3'-концу 30-50 нуклеотидов полиадениловой кислоты на расстоянии 15 нуклеотидов от последовательности ААУААА. По этой причине транскрипция заканчивается вдали от полиА-сигнала, а про-цессинг удаляет экстрануклеотиды до полиА-добавления.

Синтезированная "зрелая" мРНК является первичным продуктом действия генов и идет затем из ядра в цитоплазму, где служит матрицей для формирования полипептидных цепей на рибосомах. Считают, что в клетках имеется по 2000-3000 молекул мРНК, находящихся на разных уровнях синтеза и распада. В частности, установлены рибозимы с полинуклеотидкиназной активностью, способные катализировать АТФ-зависимое фосфорилирование.

Большинство эукариотических промоторов содержит ТАТА-последовательность, локализованную на расстоянии 30 оснований от сайта транскрипционного старта. Инициация транскрипции обеспечивается совместным действием полимеразы и шести дополнительных белков.

Установление интронов поставило вопрос об их происхождении. В объяснении происхождения используют две гипотезы. В соответствии с одной гипотезой интроны были представлены уже в пред-ковых генах, в соответствии с другой - интроны были включены в гены, которые оригинально были непрерывными.

Наряду с описанной транскрипцией у некоторых РНК-овых вирусов известна обратная транскрипция, при которой матрицей для синтеза ДНК является РНК и которая осуществляется ферментом, получившим название обратной транскриптазы (ревертазы). Здесь информация идет по схеме РНК -- ДНК -- белок. Как свидетельствуют исследования, обратная транскриптаза найдена как у прокариотов, так и у эукариотов. Считают, что ревертаза имеет очень древнее происхождение и существовала еще до разделения организмов на прокариоты и эукариоты.

Похожие статьи




Этапы биосинтеза белка, Транскрипция - Биосинтез белков. Ген и его роль в синтезе белков

Предыдущая | Следующая