ЗВ'ЯЗКИ - Амінокислоти: одержання, властивості, роль у біології

Амінокислоти здатні утворювати ряд хімічних зв'язків з різними реакційноздатними групами.

Пептидний зв'язок. Цей зв'язок утворюється в результаті виділення води при взаємодії аміногрупи однієї амінокислота з карбоксильною іншої. Сполука що утворилась внаслідок такої реакції називається Дипептид.

Іонний зв'язок. При схожому значенні pH іонізована аміногрупа може взаємодіяти з іонізованою карбоксильною. в результаті чого утворюється іонний зв'язок. У водному розчині іонні зв'язки значно слабкіші ковалентних; і вони можуть розриватися при зміні pH середовища.

Дисульфідний зв'язок. Коли дві молекули цистеїна, їх сульфгідрильні (-SH) групи, знаходяться поруч, вони окислюються утворюючи дисульфідний звязок. Дисульфідні звязки можуть виникати при також між різними поліпептидними ланцюгами. Цей факт грає важливу роль в білковій структурі.

Водневий зв'язок. Електропозитивні водневі атоми, сполучені з азотом чи киснем в групах - OH або - NH, намагаються узагальнити електрони з наййближчими електронегативними атоиами кисню, наприклад з киснем в групі =СО. Утворений таким чином водневий зв'язок є слабим, але такі зв'язки виникають досить часто і сумарний вплив на стабільність в молекулі значний( наприклад структура шовку).

Біосинтез амінокислот- це процес утворення амінокислот в організмі. Він може здійснюватись кількома шляхами: прямим амінуванням ненасичених кислот, відновним амінуваням кетокислотпереамвнування амінокислот зкетокислотами, завдяки реакціям за місцем радикалів амінокислот(процеси ферментативного взаємоперетворення).

В організмі людини здійснюється синтез лише замінних протеїногенних амінокислот, а в тканинах рослин синтезуються також незамінні амінокислоти. Синтез замінних амінокислот в організмі може здійснюватися із метаболів циклу Кребса, проміжних продуктів розщеплення вуглеводів та з незамінних амінокислот. Серед метаболітів циклу Кребса джерилом утворення амвнокислот є оксалоацетат і 2-оксоглутарат. З оксалоацетату утворюється аспарагінова кислота, а з неї - аспарагін:

Оксалоацетат+ГлутаматАспарагінова кислота+2-Оксоглутарат;

Аспарагінова кислота+NH3+АТФАспарагін+H3PO4 .

Із 2-оксоглутарату утворюється глутамінова кислота, глутамін, пролін, оксипролін. З промвжних продуктів обміну вуглеводів джерелом утворення амінокислот є піруват, 3-фосфогліцерат і рибозо-5*-фосфат.

Аланін з пірувату утворюється двома шляхами: переамінуванням і відновним амінуванням. Із 3-фосфогліцерату синтезується серин, а з серину - гліцин, з рибозо-5*-фосфату можливе утворення гістидину. Важливим шляхом синтезу замінних амінокислот є процеси взаємоперетворень їх за місцем радикалів та синтез замінних амінокислот з незамінних: фенілаланінтирозин; метіонін серин; серин гліцин; орнітин аргінін; метіонін цистеїн.

Синтез незамінних амінокислот здійснюється в тканинах рослин і бактеріальних клітинах. В організмі людини цей процес не здійснюється, оскільки там не утворюються кетокислоти, які могли б бути використані для їх синтезу. Синтез метіоніну та треоніну здійснюється з аспарагінової кислоти за участю АТФ та деяких ферментів - НАД-залежних дегідрогеназ, піридоксалевих, кобамідних, фоланових. Процес синтезу амінокислот відбувається однаково до утворення гомосерину, а далі він проходить з використанням ферментів, специфічних для кожної амінокислоти. Синтез лізину в бактеріальних клітинах здійснюється з пірувату та аспарагінової кислоти шляхом їх конденсації через циклічні проміжні продукти і діамінопімелінову кислоту. Фенілаланін і триптофан синтезуються з еритрозо-4*-фосфату і фосфоенолпірувату через шикімову, хоризмову та антранілову (триптофан) або префенову (фенілаланін) кислоти. Гістидин синтезується з АТФ, 5-фосфорибозил-1-пірофосфату і глутаміну під час багатоетапних перетворень. Валін, лейцин, ізолейцин синтезуються з пірувату внаслідок складних ферментативних перетворень, у результаті яких утворюється кетокислота з розгалуженим бічним радикалом; далі вона вступає в реакцію переамвнування з глутаміновою кислотою.

Похожие статьи




ЗВ'ЯЗКИ - Амінокислоти: одержання, властивості, роль у біології

Предыдущая | Следующая