Введение - Изучение научно-производственных принципов химической технологии экстракционной фосфорной кислоты в лабораторных условиях

Актуальность темы. В современных условиях глобальной конкуренции на все более интегрирующихся мировых рынках, развитие химической промышленности Казахстана имеет особенное значение. Оно предусматривает ускоренное создание новой, современной технологии и химической отрасли, освоение производства конкурентоспособных видов продукции и выход в фазу устойчивого социально-экономического развития химической промышленности и сопутствующих ей отраслей. Химическая промышленность является крупным поставщиком сырья, полупродуктов, материалов для многих отраслей национальной экономики.

В Плане действий по развитию химической промышленности Республики Казахстан на 2009 - 2015 годы предусмотрены реконструкция, модернизация и расширение мощностей действующих предприятий, а также строительство новых производств.

Одним из ведущих направлений химической промышленности Казахстана является фосфорная промышленность (производство фосфорсодержащих продуктов путем освоения богатейших запасов фосфоритов Южного и Западного Казахстана), поскольку эта отрасль служит основой для развития сельского хозяйства.

Продукция отечественной фосфорной промышленности представлена желтым фосфором, термической и экстракционной фосфорной кислотой, минеральными удобрениями и др.

Основными промышленными способами производства фосфорной кислоты в мире являются термический и экстракционный. Следует отметить, что сегодня за рубежом и на территории СНГ наблюдается спад производства термической фосфорной кислоты и рост производства очищенной экстракционной фосфорной кислоты (ЭФК). Термический способ позволяет получать наиболее чистый продукт, но представляется весьма энергоемким, дорогостоящим и экологически опасным. Экстракционный способ получения фосфорной кислоты имеет преимущества: низкая себестоимость и энергоемкость, высокая технологичность и возможность получения кислоты любого качества. ЭФК, получаемая сернокислотным разложением фосфатного сырья, является основным сырьем в производстве высококачественных фосфорных и сложных удобрений, очищенной фосфорной кислоты и кормовых фосфатов. В настоящее время ее мировое производство составляет 48,1 млн. т в пересчете на Р2О5. Многообразное использование фосфорной кислоты практически во всех сферах нашей жизни дает право назвать производство фосфорной кислоты крупнотоннажным производством. Данная научная работа имеет Теоретическое и практическое значение с точки зрения проблем и задачи переработки фосфатного сырья в целевой продукт - фосфорную кислоту с соблюдением условий оптимальных технологических режимов выхода.

Целью Научного проекта является получение сведений о важнейших физико-химических свойствах фосфорной кислоты и ее применении, сырье, экстракционном способе получения и его использования. Важной задачей является исследование научно-производственных принципов химической технологии ЭФК в лабораторных условиях. Расчетная часть включает задание на материальный баланс процесса получения ЭФК сернокислотным разложением; провести экстракцию и фильтрование полученной суспензии в лабораторных условиях.

Научная новизна. Практическое изучение научно-промышленных принципов синтеза ЭФК в условиях модернизации производства.

1. Общая характеристика фосфорной кислоты

Ортофосфорная кислота H3PO4, молярная масса 97,995; бесцветные гигроскопичные кристаллы моноклинной сингонии; расплывается на воздухе; температура плавления 42,5 0С; плотность 1,88 г/см3; -1283 кДж/моль; наиболее стабильное соединение в ряду кислородсодержащих кислот фосфора. В расплавленном состоянии склонна к переохлаждению; при 15 0C образует густую маслянистую жидкость, при -121 0C - стеклообразную массу.

Фосфорная кислота смешивается с водой в любых соотношениях. Разбавленные водные растворы имеют кисловатый вкус. Из высококонцентрированных растворов кристаллизуется в виде гемигидрата H3PO4-0,5H2O - бесцветные кристаллы моноклинной сингонии. Молекула безводной H3PO4 и ее кристаллогидрата содержит тетраэдрическую группу PO4. В безводной фосфорной кислоте образуются водородные связи типа P -- О -- H... O = P (расстояние между атомами О 0,253 нм), которые удерживают структуры PO4 в виде слоев, параллельных одной из плоскостей кристалла. Водородные связи сохраняются и в концентрированных (70-80%) растворах фосфорной кислоты, что отчасти обусловливает ее сиропообразную природу. В разбавленных до 40-50% растворах отмечена более устойчивая водородная связь фосфат-анионов с молекулами воды, а не с другими фосфат-анионами. В растворах фосфорная кислота имеет место обмен атомами кислорода между группами PO4 и водой.

H3PO4 - слабая трехосновная кислота, K1 7,1-10-3 (рКа 2,12), K2 6,2-10-8 (рКа 7,20), K3 5,0-10-13 (рКа 12,32); значения K1 и K2 зависят от температуры. Диссоциация по первой ступени экзотермична, по второй и третьей - эндотермична.

Фосфорная кислота при нормальных условиях малоактивна и реагирует лишь с карбонатами, гидроксидами и некоторыми металлами. При этом образуются одно-, двух - и трехзамещенные фосфаты. При нагревании выше 80 0C реагирует даже с неактивными оксидами, кремнеземом и силикатами. При повышенных температурах фосфорная кислота - слабый окислитель для металлов. При действии на металлическую поверхность раствором фосфорной кислоты с добавками Zn или Mn образуется защитная пленка (фосфатирование). Фосфорная кислота при нагревании теряет воду с образованием последовательно пиро - и метафосфорных кислот:

Фосфолеум (жидкий фосфорный ангидрид, суперфосфорная кислота) включает кислоты, содержащие от 72,4 до 88,6% P2O5, и представляет собой равновесную систему, состоящую из орто-, пиро-, триполи-, тетраполи - и других фосфорных кислот. При разбавлении суперфосфорной кислоты водой выделяется значительное количество тепла, и полифосфорные кислоты быстро переходят в ортофосфорную.

От других фосфорных кислот H3PO4 можно отличить по реакции с AgNO3 - выпадает желтый осадок Ag3PO4. Остальные фосфорные кислоты образуют белые осадки [1-2].

Фосфорная кислота - важный полупродукт для производства удобрений, технических реактивов, в синтезе ряда органических продуктов, в производстве активированного угля, для создания на металлах защитных покрытий. Очищенная, или так называемая пищевая Н3РО4, применяется в производстве безалкогольных напитков, фармацевтических препаратов, для приготовления кормовых концентратов и т. д.

2. Получение экстракционной фосфорной кислоты

Более экономичный экстракционный метод получения фосфорной кислоты основан на разложении природных фосфатов кислотами (в основном серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые растворы, полученные разложением азотной кислотой, перерабатывают в Комплексные удобрения, Разложением соляной кислотой - в преципитат.

Сернокислотное разложение фосфатного сырья (апатитового или фосфоритового концентрата) - хорошо исследованный метод получения ЭФК, применяемой для производства концентрированных фосфорных и комплексных удобрений. Суть метода - извлечение (экстрагирование) P4O10 (обычно P2O5) в виде H3PO4. По этому методу природные фосфаты обрабатывают H2SO4 с последующим фильтрованием полученной пульпы для отделения фосфорной кислоты от осадка сульфата кальция. Часть выделенного основного фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре, возвращают в процесс экстрагирования (раствор разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7 :1 до 3,0:1.

Природные фосфаты разлагаются по схеме (гетерогенная химическая реакция "жидкость - твердое тело"):

Ca5F(PO4)3 + 5H2SO4 > 5CaSO4(тв)v + 3Н3РО4 + HF

В случае смешения фосфата с серной кислотой средних концентраций образуется густая малоподвижная пульпа, не поддающаяся разделению. Поэтому разложение фосфата проводят в присутствии некоторого количества циркулирующей продукционной фосфорной кислоты и возвращаемых в процесс промывных растворов. В результате этого вначале фосфат реагирует в той или иной степени с фосфорной кислотой, содержащейся в растворе разбавления:

Ca3F(PO4)3 + nH3PO4>5 Ca(H2PO4)2+ (n-7)H3PO4+ HF

Затем образовавшийся Ca(H2PO4)2 взаимодействует с серной кислотой в присутствии фосфорной кислоты:

Ca(H2PO4)2 + H2SO4 + mH3PO4 > CaSO4+ (m+2)H3PO4

Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и другие минералы.

Разложение примесей:

CaCO3*MgCO3 +2H2SO4+(n-2)H2O>CaSO4* nH2O+MgSO4+2CO2

K2O*Na2O*Al2O3*2SiO2+5H2SO4> Na2SO4+K2SO4+Al2(SO4)3+2SiO2+5H2O

SiO2+4HF> SiF4+2H2O

SiF4+2HF>H2SiF6

Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2 -2,5H2O при концентрациях P2O5 выше 40% и FePO4 - 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при последующей переработке фосфорной кислоты.

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием Fe, Al, Mg, карбонатов и органических веществ непригодны для производства фосфорной кислоты.

При разложении фосфатов серной кислотой наряду с фосфорной кислотой образуется практически нерастворимый сульфат кальция.

Сульфат кальция может быть выделен в форме дигидрата CaSO4-2H2O (гипса), полугидрата (гемигидрата) CaSO4-0,5H2O или водного CaSO4 (ангидрита). В зависимости от этого процесс можно вести дигидратным, полугидратным (гемигидратным) или ангидритным способами при разных температурах с получением фосфорной кислоты различной концентрации. Количество воды, вводимой в систему определяется не только степенью окисления выделившегося сульфата кальция, сколько отмывкой кислоты из осадка и необходимостью создания текучести пульпы и концентрации кислоты [1-4].

На процесс получения ЭФК влияют:

    1. Активность жидкой фазы (H2SO4). По мере расхода H2SO4 концентрация иона Н+ уменьшается, снижается активность жидкой фазы, скорость разложения снижается. 2. С повышением t за счет реакции, наблюдается увеличение скорости разложения. 3. Примеси оказывают отрицательное влияние. 4. Скорость перемешивания до определенного предела влияет на смешивания Т-Ж. 5. Состав и тонкость помола сырья.

На рисунке 1 представлена функциональная схема производства ЭФК.

функциональная схема производства эфк

Рис. 1 Функциональная схема производства ЭФК

1 - реактор разложения природных фосфатов (экстрактор); 2 - вакуум фильтр; 3 - сборник фильтратов; 4 - колона выпарки фосфорной кислоты; 5 - система очистки газов

Получение ЭФК дигидратным способом

Схемы дигидратного процесса различаются применением или отсутствием циркуляции пульпы, распределением реагентов между реакторами, способами охлаждения пульпы, методами разделения твердой и жидкой фаз и промывки фосфогипса.

Основная цель процесса - ведение без резких колебаний концентраций, температуры и образование более крупных кристаллов сульфата кальция, поэтому создают условия:

    - чем больше продолжительность взаимодействия реагентов, тем крупнее и однороднее получаются кристаллы (ф=4-6 ч); - для увеличения скорости кристаллизации процесс проводят в присутствии большого количества растущих кристаллов сульфата кальция (затравка); - оптимальная концентрация серной кислоты в жидкой фазе при осаждении сульфата кальция поддерживается 1-1,8% (в пересчете на SO3); - для выращивания крупных кристаллов гипса в экстракторах поддерживают температуру 70-75 0С.

На рисунке 2 приведена технологическая схема получения фосфорной кислоты (28-32% Р2О5) из апатитового или (20-22% Р2О5) фосфоритового концентрата.

По схеме в первый реактор экстрактора 3 из бункера 1 дозатором 2 непрерывно вводят фосфат. В этот же реактор погружными насосами 5 вводят оборотную фосфорную кислоту из барометрического сборника 16 и циркуляционную суспензию после вакуум-испарительной установки 8 (кратность циркуляции (8ч12):1) и серную кислоту из сборника 4. Серную кислоту возможно частично или полностью вводить во второй реактор. Соотношение Ж:Т в суспензии в экстракторе поддерживают равным (1,7ч2,5):1. Из первого реактора суспензия протекает во второй, откуда основная часть ее погружным насосом 7 подается в вакуум-испаритель 8, представляющий собой резервуар, в котором вакуум - насосом поддерживают пониженное давление.

схема получения эфк дигидратным способом

Рис. 2 Схема получения ЭФК дигидратным способом

1 - бункер фосфатного сырья; 2 - дозатор; 3 - двухступенчатый экстрактор; 4 - сборник серной кислоты; 5 - погружные насосы, 6-расходомер серной кислоты; 7- погружной насос; 8 - испаритель; 9 - брызгоуловитель; 10- конденсатор; 11 - барботажный нейтрализатор; 12 - лотки карусельного вакуум-фильтра; 13-ресиверы (сепараторы); 14- промежуточный сборник суспензий - после регенерации фильтровальной ткани; 15,16,17 - барометрические сборники: для первого (основного) фильрата (15), для оборотной фосфорной кислоты (16), для промывного фильтрата (17)

Вследствие этого поступающая в него жидкость оказывается перегретой и закипает с выпаркой части воды. Это приводит к понижению температуры на 3-5 0С. Газы из вакуум-испарителя через брызгоуловитель отводят в поверхностный конденсатор 10, в котором конденсируются пары воды и улавливается часть соединений фтора. Окончательную очистку газа от соединений фтора производят в барботажном нейтрализаторе 11.

Продукционная суспензия поступает на лотковый карусельный вакуум - фильтр, в котором гипс отделяется от раствора, а осадок промывается по трехфильтратной системе.

Карусельный лотковый фильтр состоит из 24 отдельных лотков на днищах которых уложена фильтровальная ткань (капрон, лавсан и т. п.), лотки установлены на каретках с колесами, движущимися по круговым рельсам. С помощью двух шайб, образующих головку фильтра, - подвижных, вращающейся вместе с лотками, и неподвижной - фильтраты отсасываются в соответствующие вакуум-сборники (15, 16, 17). После прохождения зон фильтрации и промывок каждый лоток с помощью направляющих автоматически опрокидывается для выгрузки лепешки фосфогипса. Фильтровальная ткань промывается водой и подсушивается воздухом. Затем лоток вновь принимает рабочее положение и перемещается в зону основного фильтрования. Воду, используемую для регенерации фильтровальной ткани, подают на последнюю или предпоследнюю зону промывки осадка, что сокращает потери Р4О10 и позволяет создать на экстракционных установках замкнутую систему водооборота. Гигроскопическая влажность фосфогипса 15-40%. Количество фосфогипса (в пересчете на сухое вещество) составляет 1,2- 1,6 т на 1т переработанного природного фосфата. В процессе переработки 1т апатита выход гемигидрата кальция равен 1,4; гипса -1,6 т.

Газожидкостная смесь разделяется в сепараторах 13, в которых поддерживается разрежение 65-85 кПа. Первый фильтрат Ф1 направляется в сборник готовой продукции, а часть его переливается в барометрический сборник оборотной кислоты 16, куда также поступает и второй фильтрат Ф2, полученный в процессе промывки осадка третьим фильтратом Ф3. Фильтрат Ф3 образуется при промывке осадка суспензией, получаемой в процессе регенерации фильтровальной ткани, и свежей горячей (60-70 0С) водой. Промытый гипс передается с лотка в сборник 14, из которого в виде суспензии перекачивается в отстойник гипса. Содержание Р2О5 в фильтратах: Ф1- 28-32%, Ф2-22-25%, Ф3 - 5-10%.

В процессе получения фосфорной кислоты дигидратным способом

Выделение фтора в атмосферу невелико - 3-5% от содержащегося в исходном сырье (около 80% переходит в целевой продукт, 15-17% - в фосфогипс). Соответственно концентрация фторидов в отводимых из экстрактора газах в зависимости от способа охлаждения и вытяжки вентилятора в пересчете на фтор составляет 0,2 - 2,5 г/м3.

Согласно дигидратному способу, на 1 т продукционного Р2О5 расходуется 2,65 - 2,73 т апатита и 2,45 - 2,48 т 100%-ной серной кислоты. ЭФК, полученная из апатита дигидратным способом, содержит: 25-32% Р2О5, 1,8-2,8% СаО, 0,3-0,4% Al2O3, 0,3-0,5% Fe2O3, 1,7-2,20% F.

Получение ЭФК полугидратным способом

Способ заключается в практически полном разложении апатита в избытке фосфорной кислоты и в обработке полученной пульпы серной кислотой при регулируемой кристаллизации CaSO4*0,5Н2О. Полугидратный процесс отличается от дигидратного температурным режимом, концентраций фосфорной и свободной серной кислот, соединений фтора; растворимостью, устойчивостью, размером и формой кристаллов сульфата кальция, а также режимом промывки сульфата кальция. Гемигидратный (полугидратный) способ осуществляется точно так же, как и дигидратный с введением всех исходных реагентов в реактор.

Разложение апатита производится в 2-3 кратном избытке фосфорной кислоты (45 - 48% Р2О5) от стехиометрического количества, при температуре 95 - 1020С, в течение 1,2 - 1,7 часа. Образовавшаяся суспензия содержит дигидрофосфат кальция, который обрабатывается 92-93% H2SO4. Степень

Разложения апатита составляет 98,5 - 99%. Полученная концентрированная фосфорная кислота содержит 45 - 48 % Р2О5.

По полугидратному способу в процессе разложения к апатиту добавляют немного соды, с целью удаления в осадок переходящего в раствор иона SiF4. При этом ~50% фтора осаждается в виде Na2SiF6 и 35% фтора выделяется в газовую фазу.

Размеры одиночных кристаллов зависят от концентрации кислоты и плотности пульпы, а также от наличия примесей. Присутствие до 2% Fe2O3 и или Al2O3 в фосфорнокислых растворах, содержащих 45-50% Р2О5, ведет к уменьшению размеров кристаллов полугидрата.

Наличие в растворе 0,5 - 0,6% фтористых и кремнефтористых соединений приводит к резкому уменьшению размеров кристаллов и получению их в игольчатой форме. Увеличение содержания фтористых соединений до 1% замедляет фильтруемость в 5 раз.

Совместное присутствие соединений алюминия и ионов фтора в количестве до 2% Al2O3 и 0,4 - 0,5% F приводит к образованию изометричных кристаллов с лучшими фильтрующими свойствами.

Получение ЭФК ангидритным способом

В настоящее время в промышленности ангидритным способом ЭФК не производят, т. к. процесс протекает при высоких температурах 100 - 110 0С, при этом образуется концентрированная фосфорная кислота ~50% Р2О5, которая создает интенсивные коррозионные условия и образование труднофильтруемого мелкокристаллического сульфата кальция, что требует большего числа ступеней противоточной промывки.

Преимущество ангидритного способа от других способов заключается в том, что позволяет без упаривания получать кислоту, содержащую 50% Р2О5, а также в процессе экстракции большая часть фтора выделяется в газовую фазу и получаемая кислота меньше загрязнена CaSО4.

Получение ЭФК комбинированными способами

Комбинированные способы (дигидратно-гемигидратный и гемигидратно - дигидратный) получения ЭФК наиболее распространены за рубежом, так как

Более технологичны и экономичны. Они обеспечивают повышение степени использования исходного фосфатного сырья, повышение концентрации целевого продукта, более чистого CaSO4 с большими возможностями его дальнейшей переработки. Комбинированные процессы усложнены двойным фильтрованием или нетехнологичны из-за продолжительной стадии перекристаллизации в гемигидратном-дигидратном способе. термохимический физический оборудование фосфорный

В комбинированных процессах предусмотрено регулирование условий гидратации с получением крупнокристаллического гипса с незначительным содержанием Р2О5. Комбинированный процесс получения ЭФК предусматривает следующие стадии:

    1) осаждение гемигидрата смешением исходного фосфорита с оборотной фосфорной и серной кислотами при температуре 90-95 0С; 2) охлаждение суспензии до 50-65 0С; 3) гидратация гемигидрата с введением затравочных кристаллов гипса, серной кислоты и активного диоксида кремния для связывания фторид-ионов, замедляющих в сочетании с ионами алюминия обводнение. Продолжительность процесса гидратации составляет 5-16 часов.

Описанный способ позволяет получать фосфорную кислоту, содержащую не более 32% Р2О5 [5-7].

3. Экспериментальная часть работы (синтез ЭФК в лабораторных условиях)

На практике для разложения фосфата применяют серную кислоту, разбавленную раствором фосфорной кислоты ("раствор разбавления"). Образующийся осадок сульфата кальция (гипс) должен быть получен в виде однородных крупнокристаллических частиц, которые можно было бы легко отфильтровать от фосфорной кислоты и хорошо промыть небольшим количеством воды.

Продолжительность и технологический режим процесса экстракции определяются в основном условиями кристаллизации гипса, так как скорость самого разложения фосфатов достаточно велика. Время, необходимое для разложения фосфата, зависит от сорта сырья и колеблется в пределах 4-8 часов.

Оптимальная температура образования крупных кристаллов гипса 75-80 0С. При этих условиях гипс имеет наибольшую растворимость в фосфорной кислоте, вследствие чего уменьшается степень пересыщения раствором гипсом и улучшаются условия кристаллизации. Процесс можно осуществить и по так называемым полугидратному и ангидритному режимам. В этих случаях для образования кристаллов полугидрата и ангидрита поддерживают более высокую температуру - до 105 0С.

Формы и размер кристаллов гипса зависят также от концентрации в растворе ионов кальция и серной кислоты. Для получения крупнокристаллического однородного осадка необходимо поддерживать в растворе концентрации, в %: SО3 - 1-2, СаО - 0,35-0,75. Поэтому концентрацию серной кислоты на первой стадии разложения (в первом экстракторе) поддерживают на уровне 20 г/дм3, а на последующих стадиях, когда происходит доразложение фосфата, от 10 г/дм3 и меньше.

Оптимальные условия кристаллизации и отмывки гипса, а также необходимость разбавления серной кислоты раствором фосфорной кислоты предопределяют применение серной кислоты концентрацией 75% Н2SО4. Применение более концентрированной (93%) кислоты позволяет несколько уменьшить потери фосфорной кислоты с фосфогипсом, но не отражаются на концентрации получаемой кислоты.

Разложение фосфата с образованием фосфорной кислоты проводили в фарфоровом стакане на 1дм3, установленном в вытяжном шкафу. В стакан помещали мешалку и устанавливали его в баню или на электрическую плитку для подогрева до требуемой температуры.

Похожие статьи




Введение - Изучение научно-производственных принципов химической технологии экстракционной фосфорной кислоты в лабораторных условиях

Предыдущая | Следующая