Теоретическое обоснование математического моделирования - Математические методы и модели в экономике

Коммерческая деятельность в том или ином виде сводится к решению таких задач: как распорядиться имеющимися ресурсами для достижения наибольшей выгоды или какое следует предпринять действие для получения возможно лучшего финансового результата. Для этого требуется перевод задач коммерческой деятельности на математический язык. В этом и состоит одна из проблем овладения искусством математического моделирования.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки.

Как правило, моделирование используется:

    1. для исследования системы до того, как она спроектирована с целью определения ее основных характеристик и правил взаимодействия элементов между собой и с внешней средой; 2. на этапе проектирования для анализа и синтеза различных видов структур и выбора наилучшего варианта реализации с учетом сформулированных критериев оптимальности и ограничений; 3. на этапе эксплуатации системы для получения оптимальных режимов функционирования и прогнозных оценок ее развития.

При этом одну и ту же систему можно описать различными типами моделей. Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Подмоделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включаетипостроениеабстракций, иумозаключенияпоаналогии, и конструирование научных гипотез. Модели могут быть физическими, аналоговыми и математическими. Они могут быть представлены в виде графиков, рисунков, математических соотношений, макетов, различного рода механических, электрических и прочих устройств.

По конкретному предназначению, т. е. по цели создания и применения, выделяют несколько видов моделей. Рассмотрим оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления.

Математическое моделирование экономических процессов, тесно связанное с компьютеризацией, в последние десятилетия является наиболее быстро развивающимся направлением экономической науки и ее важнейших приложений.

В тех случаях, когда модель содержит t уравнений, для построения опорных решений используются t переменных, принимающих некоторые положительные значения при нулевых значениях остальных свободных переменных. Вычислительная процедура может быть представлена в виде следующей последовательности. Итеративный переход от одного допустимого базисного решения проводится направленно от одной вершины области допустимых решении к другой, заключающегося в обмене базисных и свободных переменных: базисная переменная приравнивается к нулю и переходит в свободную, а соответственно свободная переменная переводится на место базисной. Если в столбце свободных членов все элементы положительны, то решение является допустимым. Если в строке целевой функции все элементы неотрицательные, то решение является оптимальным при решении задачи на максимум.

В соответствии с симплексным методом на первом шаге находят начальное опорное решение - допустимый вариант, удовлетворяющий всем ограничениям. Затем последовательно за определенное число итераций направленно осуществляется переход от одного опорного решения к другому вплоть до оптимального. Следует заметить, что на первом шаге в качестве базисных переменных следует выбрать такие t переменные, каждая из которых входит только один раз в одно из t уравнений системы, при этом нет таких уравнений системы, в которые не входит ни одна из них.

Процесс решения задачи линейного программирования носит итерационный характер: однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор, пока не будет получено оптимальное решение. Процедуры, реализуемые в рамках симплекс-метода, требуют применения вычислительных машин - мощного средства решения задач линейного программирования.

Симплекс-метод - это характерный пример итерационных вычислений, используемых при решении большинства оптимизационных задач. Правая и левая части ограничений линейной модели могут быть связаны знаками <=,=и=>. Кроме того, переменные, фигурирующие в задачах линейного программирования (ЛП), могут быть неотрицательными или не иметь ограничения в знаке. Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме, которую назовем стандартной формой линейных оптимизационных моделей. При стандартной форме линейной модели.

    1. Все ограничения записываются в виде равенств с неотрицательной правой частью; 2. Значения всех переменных модели неотрицательны; 3. Целевая функция подлежит максимизации или минимизации.

Информация, которую можно получить с помощью симплекс-метода, не ограничивается лишь оптимальными значениями переменных. Симплекс-метод фактически позволяет дать экономическую интерпретацию полученного решения и провести анализ модели на чувствительность.

Похожие статьи




Теоретическое обоснование математического моделирования - Математические методы и модели в экономике

Предыдущая | Следующая