ТЕМПЕРАТУРА - Основные положения молекулярно-кинетической теории, ее опытные обоснования

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т. д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.

Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

Где k = 1,38*10 -23 Дж/К - постоянная Больцмана

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273, где t - температура в градусах Цельсия

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так: p=nkT

Основные уравнения молекулярно-кинетической теории идеального газа для давления.

Газ называют идеальным, если:

    1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда; 2) между молекулами газа отсутствуют силы взаимодействия; 3) столкновения молекул газа со стенками сосуда абсолютно упругие.

Реальные газы (например, кислород и гелий) в условиях, близких к нормальным, а также при низких давлениях и высоких температурах близки к идеальным газам. Частицы идеального газа в промежутках между столкновениями движутся равномерно и прямолинейно. Давление газа на стенки сосуда можно рассматривать как ряд быстро следующих ударов газовых молекул о стенку. Рассмотрим, как вычислить давление, вызванное отдельными ударами. Представим себе, что по некоторой поверхности происходит ряд отдельных и частых ударов. Найдем такую среднюю постоянную силу <F>, которая, действуя в течение времени t, за которое происходили отдельные удары, произведет такое же действие, как и все эти удары в своей совокупности. В таком случае импульс этой средней силы за время t должен равняться сумме импульсов всех тех ударов, которые получила поверхность за это время, т. е.

, где t1, t2, t3 ... tN - время взаимодействия первой, второй, ..., n-й молекул со стенкой (т. е. длительность удара); f1, f2, f3 ... fN - силы удара молекул о стенку. Из этой формулы следует, что

(7)

Средняя сила давления, вызванная рядом отдельных ударов о некоторую поверхность, численно равна сумме импульсов всех ударов, полученных этой поверхностью за единицу времени называется изохорой.

Скорости газовых молекул

Формулу (12) можно записать в виде: , (15) где (масса газа).

Из выражения (15) вычислим среднюю квадратичную скорость движения молекул газа:

. (16)

Зная, что (R-универсальная газовая постоянная;R=8,31 ), получим новые выражения для определения <c>. . (17)

Опытное определение скоростей движения молекул паров серебра впервые был проведен в 1920 г Штерном.

Рис. 5

Из стеклянного цилиндра Е выкачивался воздух (рис. 5). Внутри этого цилиндра помещался второй цилиндр Д, имеющий с ним общую ось О. Вдоль образующей цилиндра Д имелся прорез в виде узкой щели С. По оси протягивалась посеребренная платиновая проволока, по которой можно было пропускать ток. При этом проволока раскалялась и серебро с ее поверхности обращалось в пар. Молекулы паров серебра разлетались в различные стороны, часть их проходила через щель С цилиндра Д и на внутренней поверхности цилиндра Е получался налет серебра в виде узкой полоски. На рис. 5 положение полоски серебра отмечено буквой А.

Когда вся система приводилась в очень быстрое движение таким образом, что проволока являлась осью вращения, то полоска А на цилиндре Е получилась смещенной в сторону, т. е. например, не в точке А, а в точке В. Это происходило потому, что пока молекулы серебра пролетали путь СА, точка А цилиндра Е успевала повернуться на расстояние АВ и молекулы серебра попадали не в точку А, а в точку В.

Обозначим величину смещения серебряной полоски АВ = d; радиус цилиндра Е через R, радиус цилиндра Д через r, а число оборотов всей системы в секунду через ??

За один оборот системы точка А на поверхности цилиндра Е пройдет путь, равный длине окружности 2?R, а за 1 секунду она пройдет путь. Время t, в течение которого точка А переместилась на расстояние АВ = d, будет равно: . За время t молекулы паров серебра пролетали расстояние CA = R - r. Скорость их движения v может быть найдена, как пройденный путь, деленный на время: или, заменяя t, получим:

Налет серебра на стенке цилиндра Д получался размытым, что подтверждало наличие различных скоростей движения молекул Из опыта можно было определить наиболее вероятную скорость vВер которая соответствовала наибольшей толщине налета серебра.

Наиболее вероятную скорость можно рассчитать по формуле, данной Максвеллом: . (18) По вычислениям Максвелла средняя арифметическая скорость движения молекул равна: . (19)

Уравнение состояния идеального газа - уравнение Менделеева-Клапейрона

Из основного уравнения молекулярно-кинетической теории (см. формулу (14)) следует закон Авогадро: в равных объемах разнородных газов при одинаковых условиях (одинаковой температуре и одинаковом давлении) содержится одинаковое число молекул:

(для одного газа), (для другого газа).

Если V1 = V2; Т1 = Т2; ?1 = ?2, то n01 = n02.

Напомним, что единицей количества вещества в системе СИ является моль (грамммолекула) масса ? одного моля вещества называется молярной массой этого вещества. Число молекул, содержащихся в одном моле разных веществ одинаково и называется число Авогадро (NA = 6,021023 1/моль).

Запишем уравнение состояния идеального газа для одного моля: , где V? - объем одного моля газа; , где V? - объем одного моля газа; (универсальная газовая постоянная).

Окончательно имеем: (26)

Уравнение (26) называется уравнением Клапейрона (для одного моля газа). При нормальных условиях (р = 1,013105 Па и Т = 273,150К) молярный объем любого газа VM = 22,410-3 . Из формулы (26) определим

; . От уравнения (26) для моля газа можно перейти к уравнению Менделеева-Клапейрона для любой массы газа m. Отношение дает число молей газа. Левую и правую части неравенства (26) умножим на. Имеем, где объем газа). Окончательно запишем: 27). Уравнение (27) - уравнение Менделеева-Клапейрона. В это уравнение можно внести плотность газа и. В формуле (27) заменим V и получим или

Похожие статьи




ТЕМПЕРАТУРА - Основные положения молекулярно-кинетической теории, ее опытные обоснования

Предыдущая | Следующая