Сравнение старой и новой парадигм - О новой парадигме математических методов исследования

Проведем развернутое сравнение старой и новой парадигм математических методов исследования. При этом опираемся на материалы раздела "Математические методы исследования" научно-технического журнала "Заводская лаборатория. Диагностика материалов". С момента основания раздела в 1961 г. в нем опубликовано более тысячи статей.

Типовые исходные данные в новой парадигме - объекты нечисловой природы (элементы нелинейных пространств, которые нельзя складывать и умножать на число, например, множества, бинарные отношения), а в старой - числа, конечномерные векторы, функции. Ранее (в старой парадигме) для расчетов использовались разнообразные суммы, однако объекты нечисловой природы нельзя складывать, поэтому в новой парадигме применяется другой математический аппарат, основанный на расстояниях между объектами нечисловой природы и решении задач оптимизации.

Изменились постановки задач анализа данных и экономико-математического моделирования. Старая парадигма математической статистики исходит из идей начала ХХ в., когда К. Пирсон предложил четырехпараметрическое семейство распределений для описания распределений реальных данных. В это семейство как частные случаи входят, в частности, подсемейства нормальных, экспоненциальных, Вейбулла-Гнеденко, гамма-распределений. Сразу было ясно, что распределения реальных данных, как правило, не входят в семейство распределений Пирсона (об этом говорил, например, академик С. Н. Бернштейн в 1927 г. в докладе на Всероссийском съезде математиков [43]; см. также [44]). Однако математическая теория параметрических семейств распределений (методы оценивание параметров и проверки гипотез) оказалась достаточно интересной с теоретической точки зрения (в ее рамках был доказан ряд трудных теорем), и именно на ней до сих пор основано преподавание во многих вузах. Итак, в старой парадигме основной подход к описанию данных - распределения из параметрических семейств, а оцениваемые величины - их параметры, в новой парадигме рассматривают произвольные распределения, а оценивают - характеристики и плотности распределений, зависимости, правила диагностики и др. Центральная часть теории - уже не статистика числовых случайных величин, а статистика в пространствах произвольной природы, т. е. нечисловая статистика [15, 45].

В старой парадигме источники постановок новых задач - традиции, сформировавшиеся к середине ХХ века, а в новой - современные потребности математического моделирования и анализа данных (XXI век), т. е. запросы практики. Конкретизируем это общее различие. В старой парадигме типовые результаты - предельные теоремы, в новой - рекомендации для конкретных значений параметров, в частности, объемов выборок. Изменилась роль информационных технологий - ранее они использовались в основном для расчета таблиц (в частности, информатика находилась вне математической статистики), теперь же они - инструменты получения выводов (имитационное моделирование, датчики псевдослучайных чисел, методы размножение выборок, в т. ч. бутстреп, и др.). Вид постановок задач приблизился к потребностям практики - при анализе данных от отдельных задач оценивания и проверки гипотез перешли к статистическим технологиям (технологическим процессам анализа данных). Выявилась важность проблемы "стыковки алгоритмов" - влияния выполнения предыдущих алгоритмов в технологической цепочке на условия применимости последующих алгоритмов. В старой парадигме эта проблема не рассматривалась, для новой - весьма важна.

Если в старой парадигме вопросы методологии моделирования практически не обсуждались, достаточными признавались схемы начала ХХ в., то в новой парадигме роль методологии (учения об организации деятельности) [46] является основополагающей. Резко повысилась роль моделирования - от отдельных систем аксиом произошел переход к системам моделей. Сама возможность применения вероятностного подхода теперь - не "наличие повторяющегося комплекса условий" (реликт физического определения вероятности (по Мизесу), использовавшегося до аксиоматизации теории вероятностей А. Н. Колмогоровым в 1930-х гг.), а наличие обоснованной вероятностно-статистической модели. Если раньше данные считались полностью известными, то для новой парадигмы характерен учет свойств данных, в частности, интервальных и нечетких [47]. Изменилось отношение к вопросам устойчивости выводов - в старой парадигме практически отсутствовал интерес к этой тематике, в новой разработана развитая теория устойчивости (робастности) выводов по отношению к допустимым отклонениям исходных данных и предпосылок моделей [13, 48].

Результаты сравнения парадигм удобно представить в виде табл. 1.

Таблица 1. Сравнение основных характеристик старой и новой парадигм

Характеристика

Старая парадигма

Новая парадигма

1

Типовые исходные данные

Числа, конечномерные вектора, функции

Объекты нечисловой природы [15, 45]

2

Основной подход к моделированию данных

Распределения из параметрических семейств

Произвольные функции распределения

3

Основной математический аппарат

Суммы и функции от сумм

Расстояния и алгоритмы оптимизации [[15, 45]]

4

Источники постановок новых задач

Традиции, сформировавшиеся к середине ХХ века

Современные прикладные потребности анализа данных (XXI век)

5

Отношение к вопросам устойчивости выводов

Практически отсутствует интерес к устойчивости выводов

Развитая теория устойчивости (робастности) выводов [13, 48]

6

Оцениваемые величины

Параметры распределений

Характеристики, функции и плотности распределений, зависимости, правила диагностики и др.

7

Возможность применения

Наличие повторяющегося комплекса условий

Наличие обоснованной вероятностно-статистической модели

8

Центральная часть теории

Статистика числовых случайных величин

Нечисловая статистика [15, 45]

9

Роль информационных технологий

Только для расчета таблиц (информатика находится вне статистики)

Инструменты получения выводов (датчики псевдослучайных чисел, размножение выборок, в т. ч. бутстреп, и др.) [49, 50]

10

Точность данных

Данные полностью известны

Учет неопределенности данных, в частности, интервальности и нечеткости [47]

11

Типовые результаты

Предельные теоремы (при росте объемов выборок)

Рекомендации для конкретных объемов выборок

12

Вид постановок задач

Отдельные задачи оценивания параметров и проверки гипотез

Высокие статистические технологии (технологические процессы анализа данных) [51]

13

Стыковка алгоритмов

Не рассматривается

Весьма важна при разработке процессов анализа данных

14

Роль моделирования

Мала (отдельные системы аксиом)

Системы моделей - основа анализа данных

15

Анализ экспертных оценок

Отдельные алгоритмы

Прикладное "зеркало" общей теории [31, 32]

16

Роль методологии

Практически отсутствует

Основополагающая [13, 52, 53]

Похожие статьи




Сравнение старой и новой парадигм - О новой парадигме математических методов исследования

Предыдущая | Следующая