Способы деаэрации воды и конструктивное выполнение деаэраторов - Деаэрация питательной воды

Для удаления газов из воды могут быть использованы химические и термические методы. Химические методы основаны на избирательном взаимодействии удаляемых газов с дозируемыми реагентами. Практически химический метод применим только для удаления кислорода. Для этого используют гидразин, и то не как самостоятельный метод, а для удаления микро количеств кислорода. Вместе с гидразином в воду могут поступать другие примеси. Кроме того, гидразин является токсичным веществом. На паротурбинных электростанциях применяют в основном термическую деаэрацию. Термические деаэраторы позволяют удалять из воды любые растворенные в воде газы и не вносят никаких дополнительных примесей в воду.

Рассмотрим принцип работы термического деаэратора:

В соответствии с законом Генри количество растворенного в воде газа, например кислорода - Go2, пропорционально парциальному давлению этого газа над жидкостью.

(1)

Где: Go2 - количество растворенного в воде кислорода; 2 - коэффициент абсорбции кислорода жидкостью или коэффициент растворимости кислорода, зависящий от температуры; 2 - парциальное давление кислорода над жидкостью.

Суммарное давление над уровнем воды:

(2)

Где:

Рн2о - парциальное давление водяных паров; Рг - сумма парциальных давлений других, кроме кислорода, газов, растворенных в воде.

С учетом (2) уравнение (1) можно записать в виде:

(3)

Нагревом воды можно уменьшать содержания кислорода, поскольку коэффициент растворимости (ko2) уменьшается с ростом температуры. Несмотря на уменьшение количества кислорода в воде с повышением температуры, оставшаяся его часть значительна. Так, при изменении температуры воды от 20 до 50 °С количество растворенного в воде кислорода уменьшается с 9 до 5 мг/кг. Оставшаяся часть кислорода (5 мг/кг) в сотни раз превышает допустимые уровни.

Из уравнения (3) следует, что для сведения к нулю содержания кислорода в воде необходимо выполнение условия:

(4)

Это условие выполняется при повышении температуры воды до температуры насыщения, т. е. до кипения. При температуре кипения давление над водой определяется давлением насыщенных паров воды, а количество растворенного в воде кислорода равно нулю. Устройство, где происходит прогрев воды до температуры кипения с целью удаления газов, называется деаэратором. Подогрев воды в деаэраторе осуществляется за счет отборного пара из турбины.

Для надежного удаления из воды газов необходимо прогревать всю массу воды до температуры насыщения. Недогрев воды на 1-3°С увеличивает остаточное содержание газов в воде. (см. рис.3).

Для выполнения условия (4) необходимо постоянно удалять выделившиеся из воды газы. Отводимая из деаэратора парогазовая смесь называется выпаром. Чем больше выпар, тем эффективнее будет работать деаэратор.

зависимость остаточного содержания кислорода от температуры деаэрации и недогрева воды

Рисунок 3 Зависимость остаточного содержания кислорода от температуры деаэрации и недогрева воды

Термические деаэраторы подразделятся по назначению на: 1) деаэраторы питательной воды паровых котлов; 2) деаэраторы добавочной воды и обратного конденсата внешних потребителей; 3) деаэраторы подпиточной воды тепловых сетей.

Наибольшее значение для работы электростанции имеют деаэраторы питательной воды паровых котлов (ДПВ).

Деаэраторы могут быть смешивающие, поверхностные и перегретой воды. Наибольшее распространение получили смешивающие деаэраторы. В контуре реакторной установки РБМК используются смешивающие деаэраторы. Поверхностные деаэраторы используются в том случае, еслигреющий пар изменяет материальный баланс установки. Так, например поверхностные деаэраторы устанавливаются на линии подпитки первого контура АЭС с ВВЭР-1000. В деаэраторах перегретой воды подаваемая на деаэрацию вода подогревается в теплообменнике до температуры, превышающей температуру насыщения в деаэраторе. Избыточная теплота этой воды расходуется на парообразование. Недостатком деаэратора перегретой воды является сложность осуществления одновременной деаэрации потоков воды с разными энтальпиями, поэтому они не получили практического применения.

Деаэраторы подразделяются по давлению на вакуумные (работающие при давлении ниже атмосферного7,5-50кПа), атмосферные (работающие при давлении0, 12МПа), повышенного давления (работающие при давлении 0, 6- 0, 8МПа, а на АЭС-до1, 25МПа). Вакуумные деаэраторы устанавливаются на подпитке теплосети, атмосферные - на линии подачи добавочной воды и деаэраторы повышенного давления - на основном потоке конденсата.

Само деаэраторная установка представляет из себя деаэрационную колонку, в которой подогреваемая вода стекает сверху вниз, а навстречу ей снизу подается греющий пар. Деаэрационная колонка устанавливается на бак - аккумулятор питательной воды, куда стекает продеаэрированная вода. В эксплуатации под деаэратором понимают совокупность деаэрационных колонн и деаэраторного бака, на который они устанавливаются. Для улучшения процесса деаэрации в деаэраторах смешивающего типа необходимо обеспечить большую поверхность контакта подогреваемой среды с паром. Поэтому конструкции термических деаэраторов подразделяются, в первую очередь, по способу дробления воды. Различают деаэраторы: сопловые, с насадками, пленочные, струйные и барботажные. В сопловых деаэраторах распыление воды идет с помощью сопел. Сопловые, с насадкамии пленочные деаэраторы широкого распространения не получили, так как сопловые малоэффективны, а с насадками (установка большого количества металлических насадок) и пленочные (вода стекает в виде пленки по концентрическим стальным кольцам) дают дополнительное количество продуктов коррозии в воду. Широкое распространение получили струйные деаэраторы. Для увеличения времени контакта пара с водой и глубины разложения бикарбонатов струйную деаэрацию можно дополнить барботажной, подавая часть пара под уровень воды в деаэраторном баке. Пар, барботируя через воду, способствует более полному удалению газов.

Похожие статьи




Способы деаэрации воды и конструктивное выполнение деаэраторов - Деаэрация питательной воды

Предыдущая | Следующая