Проверка гипотез о законе распределения, Критерий К. Пирсона - Проверка статистических гипотез
Критерий К. Пирсона
Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F(x) и эмпирическим распределением Fп(x), которая приближенно подчиняется закону распределения c 2. Гипотеза Н0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда.
Итак, пусть выборка представлена статистическим рядом с количеством разрядов y. Наблюдаемая частота попаданий в i-й разряд ni. В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i-й разряд составляет Fi. Разность между наблюдаемой и ожидаемой частотой составит величину (n i - Fi). Для нахождения общей степени расхождения между F(x) и Fп(x) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда
Величина c 2 при неограниченном увеличении n имеет распределение хи-квадрат (асимптотически распределена как хи-квадрат). Это распределение зависит от числа степеней свободы k, т. е. количества независимых значений слагаемых в выражении. Число степеней свободы равно числу y минус число линейных связей, наложенных на выборку. Одна связь существует в силу того, что любая частота может быть вычислена по совокупности частот в оставшихся y - 1 разрядах. Кроме того, если параметры распределения неизвестны заранее, то имеется еще одно ограничение, обусловленное подгонкой распределения к выборке. Если по выборке определяются f параметров распределения, то число степеней свободы составит
K=y - f -1.
Область принятия гипотезы Н0 определяется условием c 2Ј c 2(k;a ), где c 2(k;a ) - критическая точка распределения хи-квадрат с уровнем значимости a. Вероятность ошибки первого рода равна a, вероятность ошибки второго рода четко определить нельзя, потому что существует бесконечно большое множество различных способов несовпадения распределений. Мощность критерия зависит от количества разрядов и объема выборки. Критерий рекомендуется применять при n>200, допускается применение при n>40, именно при таких условиях критерий состоятелен (как правило, отвергает неверную нулевую гипотезу).
Для нормального закона возможные значения случайной величины лежат в диапазоне от - Г до Г, поэтому при расчетах оценок вероятностей крайний левый и крайний правый интервалы расширяются до - Г и Г соответственно. Вычислить значения функции нормального распределения можно, воспользовавшись стандартными функциями табличного процессора или полиномом наилучшего приближения.
Похожие статьи
-
Критерий Мизеса, Статистика критерия - Проверка статистических гипотез
В качестве меры различия теоретической функции распределения F(x) и эмпирической Fn(x) по критерию Мизеса (критерию w 2) выступает средний квадрат...
-
Проверка статистических гипотез - Основы научных исследований
Для проверки статистических гипотез используются статистики, называемые статистическими критериями или иначе - критериями значимости. В частности, для...
-
Введение - Проверка статистических гипотез
Статистическая гипотеза представляет собой некоторое предположение о законе распределения случайной величины или о параметрах этого закона, формулируемое...
-
Имеется выборка объема n экспериментальных значений. Предполагаем, что ошибки вычисления пренебрежимо малы, а случайные ошибки измерения температур...
-
Заключение - Проверка статистических гипотез
Обычно сущность проверки гипотезы о законе распределения ЭД заключается в следующем. Имеется выборка ЭД фиксированного объема, выбран или известен вид...
-
Статистическая вероятность и распределения случайных величин - Основы научных исследований
В теории вероятностей под случайной величиной понимают отношения числа благоприятных исходов испытаний к общему числу испытаний. Например, если из 10...
-
Распределение Фишера, Статистические гипотезы - Основы научных исследований
Служит для сравнения дисперсий разных статистических совокупностей разных случайных величин Х 1 и Х 2 . Ему подчиняется статистика (10.5) Где S2(x 1 ) >...
-
Законы распределений дискретных случайных величин. - Распределение вероятности случайных величин
Пусть некоторая СВ является дискретной, т. е. может принимать лишь фиксированные (на некоторой шкале) значения X I. В этом случае ряд значений...
-
Законы распределения времени безотказной работы - Законы надежности
Наблюдения за эксплуатацией большого количества однотипных элементов в технических объектах различного назначения, работающих в примерно одинаковых...
-
Выборочные распределения на шкалах Int и Rel
Оценка наблюдений при неизвестном законе распределения Какова цель наблюдений над случайной величиной; для чего используются результаты наблюдений; где,...
-
Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ. Эти распределения иногда...
-
Распределение Вейбулла, Нормальное распределение - Законы надежности
Двухпараметрическое распределение Вейбулла является более гибким, чем экспоненциальное, которое может рассматриваться как частный случай первого....
-
Проверка нормальности распределения - Основы научных исследований
Асимметрия и эксцесс позволяют произвести приближенную проверку нормальности распределения. Очевидно, что симметричное и не имеющее эксцесса унимодальное...
-
Экспоненциальное распределение - Законы надежности
Известное выражение для вероятности безотказной работы при = const превращается в зависимость, соответствующую экспоненциальному закону распределения ,...
-
Составляется матрица численных значений базисных функций, соответствующая расширенной матрице спектра плана Вычисляется информационная матрица...
-
Статистическая обработка результатов эксперимента - Основы научных исследований
Включает в себя определение дисперсии эксперимента, проверку постоянства дисперсии воспроизводимости и определение абсолютных и относительных...
-
Моменты распределений дискретных случайных величин. - Распределение вероятности случайных величин
Итак, закон распределения вероятностей дискретной СВ несет в себе всю информацию о ней и большего желать не приходится. Не будет лишним помнить, что этот...
-
Нормальное распределение - Распределение вероятности случайных величин
Первым, фундаментальным по значимости, является т. н. Нормальный закон Распределения непрерывной случайной величины X, для которой допустимым является...
-
Визначення закону розподілу магнітної проникності в сталі обмотки ротора. У даному розділі ми розглянемо дві випадкові величини. Це магнітна проникність...
-
Статистические испытания схемы проводятся исходя из того, что генерирование случайных логических переменных xI проводится с помощью равномерного...
-
Математическое ожидание, дисперсия Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными...
-
Непрерывные величины - возможные значение, которых непрерывно заполняют некоторый диапазон. Плотность распределения вероятности непрерывной случайной...
-
Опытом называется всякое осуществление определенных условий и действий, при которых наблюдается изучаемое случайное явление. Опыты можно характеризовать...
-
В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно...
-
применяем 2е теоремы: -формула полной вероятности Теорема гипотез (формула Байеса). Пусть вероятность полной группы не совместных гипотез H1, H2, ..., Hn...
-
Распределения непрерывных случайных величин - Распределение вероятности случайных величин
До этого момента мы ограничивались только одной "разновидностью" СВ - дискретными, т. е. принимающими конечные, заранее оговоренные значения на любой из...
-
Распределение (хи-квадрат) - Основы научных исследований
Это распределение, называемое также распределением Пирсона, используется при изучении вероятностных свойств выборочных дисперсий. Если S2(x) - дисперсия...
-
Односторонние и двухсторонние значения вероятностей - Распределение вероятности случайных величин
Если нам известен закон распределения СВ (пусть - дискретной), то в этом случае очень часто приходится решать задачи, по крайней мере, трех стандартных...
-
В большинстве случаев 0 и 1 неизвестны. Их определяют (оценивают), исходя из имеющихся выборочных наблюдений с помощью следующего уравнения: Где -...
-
Сила влияния переменной Х на Y измеряется с помощью SSX. Поскольку SSX связано с вариацией средних значений групп Х, то относительное значение SSX растет...
-
Задача регрессии. Метод наименьших квадратов Ищу функцию регрессии в виде (1*). Оценки коэффициентов нахожу с помощью Метода Наименьших Квадратов (МКВ),...
-
Для целей проверки гипотезы о значимости рассматриваемых нами институциональных показателей (место нахождения, задолженность по уплате налогов), в...
-
Взаимосвязи случайных событий - Закон распределения случайной величины
Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти)....
-
Пусть Dl, r() соответственно левые (правые) границы интервалов I, отвечающих на криволинейной трапеции ОИО значениям 0< < 1. Тогда интересующая нас...
-
ТЕСНОТА И ЗНАЧИМОСТЬ СВЯЗИ - Многомерный статистический анализ
Соответствующий статистический вывод включает определение тесноты и значимости связи между Х и Y. Тесноту связи измеряют коэффициентом детерминации R 2 ....
-
1.1 Постановка задачи Произвести обработку результатов измерений по обнаружению грубых погрешностей, используя статистические критерии: Романовского,...
-
Экономический корреляционный регрессионный Парная линейная регрессия Парная регрессия характеризует связь между двумя признаками: результативным и...
-
Нормальное распределение, также называемое распределением Гаусса, - распределение вероятностей, которое играет важнейшую роль во многих областях знаний,...
-
Тема: Статистическое изучение объема, состава и динамики доходов и расходов государственного бюджета Имеются следующие выборочные данные (выборка 25%-ная...
-
Общие индексы - Статистические индексы в анализе движения цен
Общие индексы рассчитывают для количественных и качественных показателей. В зависимости от цели исследования и наличия исходных данных используют...
Проверка гипотез о законе распределения, Критерий К. Пирсона - Проверка статистических гипотез