Прогнозирование на основе нейронных сетей - Использование нейродинамики для моделирования производственных процессов предприятия

Среди различных конфигураций искусственных нейронных сетей встречаются такие, при классификации которых по принципу обучения, строго говоря, не подходят ни обучение с учителем, ни обучение без учителя. В таких сетях весовые коэффициенты синапсов рассчитываются только однажды перед началом функционирования сети на основе информации об обрабатываемых данных, и все обучение сети сводится именно к этому расчету. С одной стороны, предъявление априорной информации можно расценивать, как помощь учителя, но с другой - сеть фактически просто запоминает образцы до того, как на ее вход поступают реальные данные, и не может изменять свое поведение, поэтому говорить о звене обратной связи с учителем не приходится. Из сетей с подобной логикой работы наиболее известны сеть Хопфилда и сеть Хэмминга, которые обычно используются для организации ассоциативной памяти. Далее речь пойдет именно о них.

Структурная схема сети Хопфилда состоит из единственного слоя нейронов, число которых является одновременно числом входов и выходов сети. Каждый нейрон связан синапсами со всеми остальными нейронами, а также имеет один входной синапс, через который осуществляется ввод сигнала. Выходные сигналы, как обычно, образуются на аксонах. Задача, решаемая данной сетью в качестве ассоциативной памяти, как правило, формулируется следующим образом. Известен некоторый набор двоичных сигналов (данных, описывающих некие объекты или характеристики процессов), которые считаются образцовыми. Сеть должна уметь из произвольного неидеального сигнала, поданного на ее вход, выделить ("вспомнить" по частичной информации) соответствующий образец (если такой есть) или "дать заключение" о том, что входные данные не соответствуют ни одному из образцов.

Ассоциативность памяти нейронной сети Хопфилда не является единственным ее достоинством, которое используется на практике. Другим важным свойством этой архитектуры является уменьшение ее функции Ляпунова в процессе нейродинамики. Следовательно, нейросеть Хопфилда можно рассматривать, как алгоритм оптимизации целевой функции в форме энергии сети. Для сети Хопфилда число запоминаемых образов m не должно превышать величины, примерно равной 0,15- n.

Когда нет необходимости, чтобы сеть в явном виде выдавала образец, то есть достаточно, скажем, получать номер образца, ассоциативную память успешно реализует сеть Хэмминга. Данная сеть характеризуется, по сравнению с сетью Хопфилда, меньшими затратами на память и объемом вычислений.

Задача прогнозирования формализуется через задачу распознавания образов. Данных о прогнозируемой переменной за некоторый промежуток времени образуют образ, класс которого определяется значением прогнозируемой переменной в некоторый момент времени за пределами данного промежутка т. е. значением переменной через интервал прогнозирования. Метод окон предполагает использование двух окон WI и W0 с фиксированными размерами n и m соответственно. Эти окна, способны перемещаться с некоторым шагом по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем первое окно WI, получив такие данные, передает их на вход нейронной сети, а второе - W0 - на выход. Получающаяся на каждом шаге пара используется как элемент обучающей выборки (распознаваемый образ, или наблюдение).

Выделяются две возможности: одношаговое и многошаговое прогнозирование.

Многошаговое прогнозирование используется для осуществления долгосрочного прогноза и предназначено для определения основного тренда и главных точек изменения тренда для некоторого промежутка времени в будущем. При этом прогнозирующая система использует по-лученные (выходные) данные для моментов времени k+1, k+2 и т. д. в качестве входных данных для прогнозирования на моменты времени k+2, k+3 и т. д.

Одношаговое прогнозирование используется для краткосрочных прогнозов, обычно - абсолютных значений последовательности. Осу-ществляется прогноз только на один шаг вперед, но используется реальное, а не прогнозируемое значение для осуществления прогноза на следующем шаге.

Как было сказано выше, результатом прогноза на нейронных сетях является класс к которому принадлежит переменная, а не ее конкретное зна-чение. Формирование классов должно проводиться в зависимости от того каковы цели прогнозирования. Общий подход состоит в том, что область определения прогнозируемой переменной разбивается на классы в соответствии с необходимой точностью прогнозирования. Классы могут представлять качественный или численный взгляд на изменение переменной.

Похожие статьи




Прогнозирование на основе нейронных сетей - Использование нейродинамики для моделирования производственных процессов предприятия

Предыдущая | Следующая