Понятие квантовой химии - Квантовые концепции в химии
Квантовая химия - это раздел теоретической химии, в котором строение и свойства химических соединений, их взаимодействие и превращение в химических реакциях рассматриваются на основе представлений и с помощью методов квантовой механики. Квантовая химия тесно связана с экспериментально установленными закономерностями в свойствах и поведении химических соединений, в т. ч. с закономерностями, описываемыми классической теорией химического строения.
Начало развития квантовой химии положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гейзенберг (1926) впервые провел расчет атома гелия; В. Гайтлер и Ф. Лондон (1927) на примере молекулы водорода дали квантовомеханическую интерпретацию ковалентной связи. Их подход нашел дальнейшее развитие в работах Дж. Слейтера (1931) и Л. Полинга (1931) и получил название валентных связей метод. В этот же период Ф. Хунд (1928), Р. Малликен (1928), Дж. Леннард-Джонс (1929) и Э. Хюккель (1930) заложили основы широко распространенного в настоящее время метода молекулярных орбиталей. Одновременно появились и основополагающие работы Д. Хартри (1927) и В. А.Фока (1930), создавших метод самосогласованного поля, а также работы Дж. Слейтера (1929-30) по математическим основам метода конфигурационного взаимодействия. Х. Бете (1929) и Дж. Ван Флек (1932-35) разработали теорию кристаллического поля, развитие которой привело к созданию теории поля лигандов, нашедшей широкое применение в координационной химии.
Основное уравнение квантовой химии - нерелятивистское уравнение Шредингера: , где Е и Ш - полная энергия и волновая функция системы, - оператор Гамильтона (гамильтониан) системы, представляющей собой сумму операторов кинетической и потенциальной энергии электронов и ядер, входящих в систему.
Волновая функция для молекулярной системы, получаемая в результате решения уравнения Шредингера, должна удовлетворять общим требованиям, предъявляемым к волновым функциям в квантовой механике. В частности, для многоэлектронной системы она должна быть антисимметричной относительно перестанови координат (пространственных и спиновых) любой пары электронов, т. е. должна менять знак при такой перестановке.
Задача нахождения волновой функции и энергии молекулярного соединения обычно решается с помощью вариационного метода или методов возмущений теории. Поскольку соответствующие расчеты весьма трудоемки, в зависимости от сложности объекта и целей исследования используют неэмпирические либо более простые полуэмпирические расчетные методы. В неэмпирических методах заранее задают только числа электронов и ядер в системе, а также заряды ядер и значении фундаментальных постоянных (например постоянной Планка, заряда и массы электрона). В полуэмпирических методах дополнительно из опыта заимствуются значения отдельных входящих в расчет величин, например величин, определяющих взаимодействие электронов с ядрами, межэлектронное взаимодействие и др. При этом вычисляемые величины, например энергия молекулы, взятой в качестве эталона должны совпадать с экспериментальными значениями. Неэмпирические расчеты, называемые часто ab initio, получили широкое распространение лишь после достаточного развития вычислительной техники и сами в немалой степени способствовали этому развитию.
Обычная схема введении упрощений при решении стационарного уравнения Шредингера для молекулы сводится к следующему. В предположении, что центр масс молекулы находится в начале системы координат, вводят адиабатическое приближение, позволяющее решать задачу в два этапа: сначала рассмотреть систему электронов, движущихся в поле неподвижных ядер (электронное уравнение Шредингера), а затем - систему ядер, движущихся в усредненном поле электронов (ядерное уравнение Шредингера).
Основы квантовой теории многоэлектронных систем были заложены в работе В. Гейзенберга, посвященной атому гелия, а также в работах В. Гайтлера и Ф. Лондона о молекуле водорода (1927). Они показали, что существование, устойчивость и свойства этих систем невозможно объяснить в рамках классических представлений. Согласно В. Гайтлеру и Ф. Лондону, связывание между атомами в молекуле водорода обусловлено так называемым обменным взаимодействием.
Дальнейшее развитие теории многоэлектронных атомов связано с методом самосогласованного поля, предложенного в 1927 Д. Р. Хартри. В нем взаимодействие каждого из электронов со всеми остальными заменяется взаимодействием с усредненным полем, создаваемым остальными электронами. В 1930 В. А. Фок усовершенствовал метод Хартри, использовав для многоэлектронной волновой функции, представление в виде слейтеровского детерминанта: такой вид волновой функции позволяет учесть принцип Паули.
В 1927-29 Ф. Хунд и Р. С. Малликен развили идею нового подхода к поиску волновой функции молекулы - так называемый метод молекулярных орбиталий. Метод молекулярных орбиталей рассматривает движение электронов молекулы в поле, создаваемом всеми остальными электронами и ядрами атомов молекулы. Для нахождения одноэлектронной функции молекулярных орбиталей можно использовать метод Хартри-Фока, однако практическое решение сложно и проводится только для атомов и двухатомных молекул. Для всех остальных систем используют приближение, предложенное С. С. Рутаном: атомные орбитали обычно представляют в виде разложения по базисным функциям Х слейтеровского или гауссовского типа, также центрированным на ядрах.
Один из важных результатов теории Хартри-Фока - теорема Купменса: энергия орбитали i, получаемая при решении уравнений Хартри - Фока, дает приближенное значение потенциала ионизации электрона, занимающего i-ю молекулярную орбиталь. В экспериментальных исследованиях наблюдается последовательность (по энергиям) ионизованных состояний. Теорема Купменса позволяет приближенно интерпретировать эту последовательность как отрыв электронов с последовательных молекулярных орбиталей. Теорему Купменса используют при интерпретации экспериментальных данных фотоэлектронной и рентгеноэлектронной спектроскопии.
Качественные представления о структуре молекулярных орбиталей (т. н. узловой структуре) лежат в основе множества теорий формы молекул и протекания химических реакций. Наиболее известной теорией качественной формы молекул в приближении молекулярной орбитали является теория Уолша.
Протекание химических реакций качественно объясняют на основе метода молекулярных орбиталей в рамках правил Вудворда-Гоффмана, правил Пирсона, метода Фукуи и др.; наиболее часто используют правила Вудворда-Гоффмана. Применяя эти правила, строят корреляционные диаграммы химических реакций, для этого: выделяют химические связи и орбитали, которые наиболее сильно изменяются в ходе реакции: задав путь сближения реагентов или отдельных связей при внутримолекулярных реакциях в направлении формирования ожидаемой структуры переходного состояния, классифицируют молекулярные орбитали реагентов и продуктов по свойствам симметрии, присущей выбранной структуре переходного состояния; устанавливают соответствие между молекулярными орбиталями реагентов и продуктов в рамках выбранной классификации орбиталей по симметрии, проходящие через рвущиеся и образующиеся в ходе реакции связи. Если в процессе химической реакции все заполненные молекулярные орбитали реагентов переходят в заполненные молекулярные орбитали продуктов в основном состоянии (сохраняется орбитальная симметрия), то данная реакция называется разрешенной. Если в процессе такой реакции происходит пересечение уровней заполненных и вакантных молекулярных орбиталей реагентов и продуктов, то реакция называется запрещенной.
Рассмотрение протекания химических реакций на основе Правил Вудворда-Гоффмана носит качественных характер, запрет по симметрии не означает невозможности протекания реакции в данном электронном состоянии. Однако запрещенные по симметрии реакции имеют высокие потенциальные барьеры или выключают промежуточное образование радикалов (или ионов). Реакции же, разрешенные по симметрии в основном состоянии, имеют, как правило, низкие потенциальные барьеры или не имеют их совсем.
Последовательное решение уравнений Хартри-Фока-Рутана на ЭВМ лежит в основе неэмпирических методов квантовой химии. Однако вычисление волновых функций и энергий в приближении Хартри-Фока-Рутана сопряжено со значительными трудностями, т. к. число интегралов, описывающих межэлектронное отталкивание, при увеличении размеров молекулярной системы растет как N4, где N - число базисных функций. Поэтому для сложных систем применяют полуэмпирические методы, в которых большая часть интегралов заменяется экспериментально полученными данными (потенциалы ионизации и сродство к электрону атома). Эти методы были распространены в ранних квантовомеханических исследованиях.
Приближение Хартри-Фока-Рутана во многих случаях дает большие погрешности (напр., отрицательное значение энергии связи для F2, неправильную симметрию для основного электронного состояния молекулы С2, неправильный знак для дипольного момента СО; приводит к неправильной последовательности ионизированных состояний молекул F2, N2 и т. д.). Для устранения недостатков этого метода учитывают энергии корреляции электронов, что позволяет определить отклонение идеализированной одноэлектронной модели от реальной.
Похожие статьи
-
Химическая связь - Квантовые концепции в химии
Химия изучает процессы превращения молекул при воздействиях и при воздействии на них внешних факторов (теплоты, света, электрического тока, магнитного...
-
"Квантовая химия" Квантовая химия - область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические...
-
Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ: V=dC/dtV. Факторы, влияющие на скорость химических...
-
Химическим равновесием называется такое состояние химической системы, при котором количества исходных веществ и продуктов не меняются со временем. 1....
-
Химия экстремальных состояний - Концепции современного естествознания: химическая составляющая
В отличие от каталитической химии, особенностью которой является химическая активизация молекул реагента, т. е. расслабление исходных химических связей...
-
В данном разделе речь идет об особом уровне развития химических знаний, на котором главенствующую роль играет структура молекулы реагента. Свойства...
-
Опис-ся правиломВант-Гоффа: С увелич-ем темп. на каждые 10 градусов. Скор. больш-ва хим. р-ций увелич-ся в 2-4 раза. Где г-темп. коэф-т скорости хим....
-
Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции. Атомно-молекулярное учение этот закон объясняет следующим...
-
ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ, Атомно-молекулярное учение - Основные понятия и законы химии
Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс....
-
Возникновение структурной теории позволило химикам впервые обрести мощный инструмент для целенаправленного качественного преобразования веществ. Именно в...
-
Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же...
-
Составление химических уравнений, Расчеты по химическим уравнениям - Основные понятия и законы химии
Включает три этапа: 1. Запись формул веществ, вступивших в реакцию (слева) и продуктов реакции (справа), соединив их по смыслу знаками "+" и "®" : HgO ®...
-
Структурная химия - Естественнонаучные концепции развития химических знаний
Структура - это устойчивая упорядоченность качественно неизменной системы (молекулы). Под данное определение подпадают все структуры, которые исследуются...
-
Теория Периодической Системы была преимущественно создана Н. Бором (1913-21) на базе предложенной им квантовой модели атома. Учитывая специфику изменения...
-
При взаимодействии атомао м/у ними может возникнуть хим. связь, приводящая к образованию устойчивой многоатомной с-мы - молекулы, кристалла. Чем прочнее...
-
Св-ва хим. эл-тов, а так же формы и св-ва соединений эл-тов нах-ся в периодической зависимости от заряда ядер их атомов. Возрастание + зарядов атомных...
-
Атом сост. из массивн. "+" заряж. ядра и нах-ся в его поле "-"электронов. В ядрах нах-ся практич. вся масса атома. В состав ядра входят элемент. частицы:...
-
ОВР, протекающие с изменением ст. окисления эл-тов, вхлдящие в состав реакц. ве-в. они сопровожд-ся переход электронов одним за другим. Zn-2e =Zn2+...
-
Закон Авогадро ди Кваренья (1811 г.) - Основные понятия и законы химии
В равных объемах различных газов при одинаковых условиях (температура, давление и т. д.) содержится одинаковое число молекул. Закон справедлив только для...
-
Атомно-молекулярное учение. Основные понятия химии - Основные понятия неорганической химии
Все вещества сост. из атомов. В химию понятие атома ввел Ломоносов: ат. разные, ат. каждого вида один. М/у собой, но отлич. от атомов др. вида., ат....
-
Химия 20 века - Этапы становления химии
Конец 19 в. ознаменовался тремя выдающимися открытиями в области физики, в результате которых была доказана сложная структура атома, прежде считавшегося...
-
Новый класс металлорганических соединений, имеющий двухслойную структуру, называется "сэндвичевые соединения". Наиболее изученным из них является...
-
Химическая связь и валентность, Валентность - Квантовые концепции в химии
Валентность Валентность - это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической...
-
Закон постоянства состава - Основные понятия и законы химии
Впервые сформулировал Ж. Пруст (1808 г). Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное...
-
Важность представлений о Системе химии лучше всего охарактеризовал Д. И. Менделеев. "Как там ни рассуждайте и не критикуйте историю, - писал он, - а...
-
ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА - Неограническая химия
Задание 3.1. Запишите реакцию взаимодействия указанного по варианту элемента с кислородом. Используя приведенные в табл. III.1 данные, рассчитайте...
-
Первым практическим поводом к осознанию необходимости изучения химической эволюции явились исследования в области моделирования биокатализаторов....
-
Слабые (L<<1, L<<100%) нек. мин. к-ты HNO2, H3PO4, HJ NH3, все ост. органич. основания (Me(OH)2), больш-во органич. кислот НСООН, СН3СООН,...
-
Система химии, логика ее развития и построения Что такое химия? Химия является высокоупорядоченной - постоянно развивающейся системой знаний о веществах,...
-
Лавуазье: революция в химии - Естественнонаучные концепции развития химических знаний
Центральная проблема химии XVIII в. - проблема горения. Вопрос состоял в следующем: что случается с горючими веществами, когда они сгорают в воздухе? Для...
-
Исследования, направленные на выяснение как материального состава растительных и животных тканей, так и химических процессов, происходящих в организме,...
-
До недавнего времени об эволюционной химии ничего не было известно. В отличие от биологов, химиков не интересовал вопрос о "происхождении видов"...
-
Методы расчета квантовых выходов - Свойства нейтральной формы гибридного соединения
В изучении фотоизомеризации часто случается так, что продукт реакции нельзя выделить в чистом состоянии, так как невозможно разделить реакционную смесь...
-
Квантовые числа электрона Квантовое число n - главное. Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He+, Li2+ и т. д.)....
-
Гибридные системы на основе квантовых точек (КТ) и органических лигандов могут быть использованы в качестве хемо-, био - и фотосенсоров, а также...
-
Комплексные соединения - соед-я, обр-ся сочетанием нескольких, способных к существованию ионов, сост. из атома в опр. валентном сост-ии, связ. с одной...
-
Электролиз - р-ция превращения ве-ва под действ. эл. тока. если к р-ру или расплаву эл-та поднести эл. ток, то ионы в нем начнут направленно перемещаться...
-
Уравнение Клайперона-Менделеева - Основные понятия и законы химии
Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева: PV= (m / M) RT Где m - масса газа; M...
-
Р-ры-галог. с-мы, сост. из 2х или более компонентов(расв-ль и растворимые ве-ва). Растворитель-тот компонент, кот. в чистом виде нах-ся в том же...
-
Если на равновесную с-му не оказ-ся вноешнего воздействия (не изм. темп, давл.), то равновесие м/существовать неизменным долго. Любое внешнее возд-ие...
Понятие квантовой химии - Квантовые концепции в химии