Определение висмута в организме, Химические свойства и физические свойства висмута - Мышьяк, висмут и сурьма

Оценка содержания висмута в организме проводится по результатам исследований биосубстратов - мочи, крови и биоптатов. При хронической интоксикации висмутом определяют его концентрацию в суточной моче. В норме концентрация висмута в моче не превышает нескольких микрограмм на миллилитр.

Химические свойства и физические свойства висмута

В сухом воздухе висмут химически устойчив, однако во влажной атмосфере наблюдается его поверхностное окисление с появлением пленки бурого цвета. Заметное окисление начинается при температуре порядка 500 °С, а при температуре выше 1 000 °С висмут горит голубоватым пламенем с образованием основного оксида Bi2O3.

Мышьяк висмут сурьма биологический

В природе Bi2O3 можно наблюдать в виде землистых скоплений желтого и бурого цвета -- это минерал бисмит или висмутовая охра. Оксид висмута (III) можно получить при прокаливании висмута на воздухе, а также при разложении нитрата висмута Bi(NO3)-5H2O. Bi2O3 имеет основный характер и легко растворяется в кислотах с образованием солей висмута (III), но практически не растворим в щелочах, даже концентрированных. При окислении хлором суспензии Bi2O3 в среде водного раствора КОН при температуре около 100° C образуется кислородное соединение высшего типа -- висмутовый ангидрид -- Bi2O5 -- темный порошок, разлагающийся при нагревании, а также с большою легкостью при действии восстановителей. Кроме того, известны оксиды висмута составов Bi2O, Bi6O7 и Bi8O11. Bi2O5 не растворяется в воде, но способен образовать гидрат Bi2O5-H2O, или BiHO3, так называемую висмутовую кислоту, метагидрат. Висмутовая кислота получается при пропускании хлора через кипящий крепкий раствор едкого кали, в котором размешана окись висмута в виде тонкого порошка. Полученная жидкость сначала окрашивается, затем осаждается красный порошок -- соединение висмутового ангидрида и окиси калия. Порошок промывают кипящей водой, затем крепкой азотной кислотой, затем более и более слабой, наконец, снова водой. Висмутовая кислота BiHO3, высушенная при 100 °С, представляет светло-красный порошок, теряющий при 130 °С воду и превращающийся в ангидрид, который при этой температуре начинает разлагаться с выделением кислорода. Этот гидрат к основаниям относится как слабая кислота, более слабая, чем сурьмяная. Соли ее со щелочными металлами легко разлагаются водой и поэтому мало исследованы.

Висмут не реагирует с водородом, углеродом, азотом, кремнием. Жидкий висмут незначительно растворяет фосфор.

При сплавлении висмута и серы образуется сульфид состава Bi2S3 -- кристаллическое вещество серого цвета, как трехсернистая сурьма, обладающее, подобно ей, металлическим блеском. Bi2S3 обладает полупроводниковыми и термоэлектрическими свойствами. При сплавлении висмута с селеном (Se) или теллуром (Te) образуются, соответственно, селенид или теллурид висмута. В ряду напряжений висмут стоит между водородом и медью, поэтому в разбавленных серной и соляной кислотах он не растворяется. Растворение в концентрированных серной и азотной кислотах идет с выделением SO2 и соответствующих оксидов азота:

Bi + 4HNO3 > Bi(NO3)3 + NO^ + 2H2O

2Bi + 6H2SO4 > Bi2(SO4)3 + 3SO2^ + 6H2O

В результате взаимодействия висмута с азотной кислотой из раствора выкристаллизовывается нитрат висмута Bi(NO3)3-5H2O. Он растворяется в небольшом количестве воды, подкисленной азотной кислотой. При действии кислот на сплав висмута с магнием (Mg) образуется висмутин, или гидрид висмута, BiH3 -- весьма нестойкое соединение, разлагающееся уже при комнатной температуре. С большинством металлов при сплавлении висмут образует интерметаллические соединения -- висмутиды, например Na3Bi, Mg3Bi и другие. С расплавами алюминия, хрома и железа висмут не взаимодействует.

Гидроксид висмута (III), или гидроокись висмута, Bi(OH)3 получается в виде белого осадка при действии щелочей на растворимые соли висмута:

Bi(NO3)3 + 3NaOH > Bi(OH)3v + 3NaNO3

Гидроксид висмута -- очень слабое основание. Поэтому соли висмута (III) легко подвергаются гидролизу, переходя в основные соли, мало растворимые в воде.

Действием очень сильных окислителей на соединения висмута (III) можно получить соединения висмута (V). Важнейшие из них это висмутаты -- соли не стабильной висмутовой кислоты, например висмутат калия KBiO3. Эти соединения представляют собой очень сильные окислители.

Качественная реакция на катион висмута (III) Bi3+. Образование ярко-желтого раствора тетраиодовисмутата (III) калия K[BiI4] при действии на раствор, содержащий Bi3+, избытком KI:

Bi(NO3)3 + 4KI = K[BiI4] + 3KNO3

Связано это с тем, что сначала образуется нерастворимый BiI3, который затем связывается с помощью I - в комплекс.

Взаимодействие висмута с серой или с сернистым газом сопровождается образованием сульфидов BiS, Bi2S3.

При нагревании с концентрированной серной кислотой растворяется с образованием BiH(SO4)2, тогда как с разбавленной серной кислотой растворяется с образованием сульфата висмута:

Взаимодействие висмута с фтором, хлором, бромом и йодом сопровождается образованием различных галогенидов:

С металлами способен образовывать интерметаллиды -- висмутиды

В отличие от сурьмы, в висмуте металлические свойства явно преобладают над неметаллическими. Висмут одновременно хрупок и довольно мягок, тяжел (плотность 9,8 г/см3), легкоплавок (температура плавления 271°C). Ему свойствен сильный металлический блеск и белый розоватого оттенка цвет. Среди прочих металлов висмут выделяют малая теплопроводность (хуже него тепло проводит только ртуть) и, если можно так выразиться, предельная диамагнитность. Если между полюсами обычного магнита поместить стержень из висмута, то он, отталкиваясь от обоих полюсов, расположится как раз посередине. Для кристаллов висмута характерно сложное двойниковое строение, которое можно увидеть только под микроскопом.

У висмута есть еще одно редкое свойство: затвердевая, он значительно расширяется в объеме (на 3,32% при 271°C). Этим свойством пользуются, когда нужно получить очень точные и сложные по форме литые изделия.

Предполагают, что способность уплотняться при плавлении объясняется изменением типа связи между атомами. Для твердого висмута характерны связи ковалентно-металлические, при плавлении же ковалентные связи разрушаются, и атомы остаются связанными лишь металлическими связями. Гетерогенный (разнородный) характер связей в твердом висмуте препятствует плотнейшей упаковке атомов в кристаллической решетке.

Одна необычность влечет за собой другую. Давление влияет на висмут иначе, чем на "нормальные" металлы. С ростом давления температура плавления висмута понижается, а у большинства металлов растет. Это необычное свойство считают следствием способности висмута расширяться при твердении и уплотняться при расплавлении. И это не удивительно: для всех физических тел характерна определенная корреляция изменений, происходящих под действием температуры и давления.

Похожие статьи




Определение висмута в организме, Химические свойства и физические свойства висмута - Мышьяк, висмут и сурьма

Предыдущая | Следующая