Каталітичний крекінг - Алкани як паливо

Значно вищі октанові числа бензинів, які одержують в процесі каталітичного крекінгу (у порівнянні з термічним крекінгом), пояснюється головним чином високим вмістом в них парафінів і олефінів з розгалудженими ланцюгами, а також частково порівняно високим вмістом в таких бензинах ароматичних вуглеводнів.

Сировиною для каталітичного крекінгу зазвичай слугує газойль, що кипить в інтервалі 250 - 500 С. Повністю або частково перетворений на пару газойль під невеликим тиском при 450 - 550 С пропускають через шар каталізатору, що являє собою тверді кислоти. Одним з таких каталізаторів є природна глина, оброблена кислотою для видалення лужних речовин і збільшення пористості. Особливо широко в якості каталізатору крекінгу застосовується суміш синтетичного кремнезему (87%) і окису алюмінію (13%), яка за своїми властивостями схожа на промиту кислотою глиною і має питому поверхню 500 кв. м / г, об'єм пор 0,55 мл / г і кислотність 0,25 мекв / г. При роботі каталізатор швидко дезактивується через відклади на ньому коксу і його часто регенерують, випалюючи кокс у тоці повітря.

Каталітичний крекінг є іонним процесом, причому карбонієві іони, що беруть в ньому участь, виникають різними шляхами. Один з цих шляхів полягає в тому, що молекула олефіну приєднує протон (реакція 1), який відщепився від кислотного каталізатора. Потім протон може бути знову повернений каталізатору або перенесений на іншу молекулу олефіну з утворенням нового карбонієвого іону, причому місце відриву протона може не збігатися з місцем його приєднання. Внаслідок цього відбувається переміщення подвійного зв'язку по ланцюгу і перетворення alfa-олефінів у більш цінні вуглеводні з подвійним зв'язком в середині молекули. Інший шлях утворення карбонієвих іонів полягає в тому, що від парафіну відщеплюється гідрид - іон (реакція 2) під дією електроноакцепторної ділянки поверхні каталізатора або при взаємодії з іншим карбонієвим іоном (реакція 3).

Потім в процесі каталітичного крекінгу карбонієві іони підлягають різноманітним перетворенням. При гідридному зсуві (реакція 4) позитивний заряд переходить до сусіднього атому вуглецю. Оскільки енергетичний рівень знижується із зміщенням заряду до центру молекули і оскільки максимальна стійкість досягається при локалізації заряду на другому - четвертому атомах вуглецю від кінця ланцюга, то відбувається переважно утворення олефінів з внутрішнім подвійним зв'язком. В результаті метидного зсуву (переміщення метильної групи разом з парою електронів простого зв'язку) (реакція 5) і наступною міграцією гідрид - іону утворюється третинний карбкатіон і відбувається розгалудження ланцюга:

Власне крекінг полягає в розщепленні вуглецевого ланцюга карбонієвого іона в beta-позиціях до позитивного заряду.

Зазвичай ланцюг розривається при цьому таким чином, що найменший фрагмент містить щонайменш три атома вуглецю. Продуктами реакції є карбонієві іони і олефіни з меншим числом атомів вуглецю. На відміну від beta-розщеплення вільних радикалів, beta-розщеплення іонів не продовжується ступінчасто по ланцюгу з утворенням етилену, напевно, тому, що карбонієвий іон, який виникає при розщепленні, є первинним і перегруповується раніше, ніж може відбутися подальше розщеплення.

Циклізація (реакція 7), певно, протікає шляхом внутрішнього алкілування олефінового карбонієвого іону і є реакцією, власне зворотньою beta-розщепленню:

При каталітичному крекінгу виходить також велика кількість циклічних олефінів і ароматичних вуглеводнів.

З розглянутих вище механізмів видно, чому в бензинах каталітичного крекінгу міститься так багато продуктів з розгалудженим ланцюгом, олефінів бажаного типу, високоякісних циклічних олефінів і ароматичних вуглеводнів. Іншою перевагою каталітичного крекінгу перед термічним є більш сприятливий розподіл продуктів за фракціями з різними межами викіпання. Так, наприклад, при термічному крекінгу цетану найхарактернішими продуктами розпаду є С2- сполуки, особливо етилен; при каталітичному крекінгу утворюється більше всього вуглеводнів ряду С4, які являють собою суміш бутанів і бутенів. При каталітичному крекінгу газойлю одержуються з високим виходом вуглеводні С5 і С6, що є цінними компонентами легкого бензину.

Під час Другої світової війни постачання авіаційним бензином сильно зросло завдяки використанню високоароматизованого каталітичного крекінг - лігроїну, який піддавався гідрогенізації в заводських масштабах для видалення олефінових компонентів і сірки з метою покращення стабільності і октанового числа етильованого бензину. При цьому процесі на відміну від процесу сірчанокислої обробки, що проходить із втратами продукту, таких же результатів досягають без втрат рідкого продукту. Щоб уникнути зниження якості бензину, необхідно звести до мінімуму гідрогенізацію ароматичних вуглеводнів. Цього вдається досягти шляхом правильного вибору каталізатора і робочих умов процесу.

Показники

Каталітичний крекінг - лігроїн

Негідрований

Гідрований

Тиск, кг / кв. см

--

210

10,5

Авіаційний бензин: бромне число

63,0

1,0

3,0

Октанове число

ASTM (моторний метод)

80,5

79,9

79,4

ASTM (авіаційний метод) + 1 куб. см ТЕС / л

90,6

97,7

96,1

Сортність на багатій суміші (середній індикат. тиск) 1 куб. см ТЕС / л

174

174

177

Хоча олефінові вуглеводні можна гідрогенізувати при низьких тисках водню, цей процес відбувається також і при високому тиску, шляхом підбору низькоактивного каталізатора, не здатного вести гідрогенізацію ароматичних вуглеводнів за даних умов. При вивченні розподілу олефінових і ароматичних вуглеводнів за фракціями було знайдено, що при гідрогенізації найсильніше покращення відображається на низькокиплячих фракціях. Їх гідрогенізація показана на мал. 2.

Одержала розвиток також аналогічна гідрогенізація при проміжних (середніх) тисках. Був здійснений процес гідрогенізації олефінів і сірчистих сполук у присутності ароматичних вуглеводнів над вольфрамнікельсульфідним каталізатором при тиску 50 ати і температурі 343 С. Висока активність цього каталізатора дозволила вести процес з великою об'ємною швидкістю -- 10 об'ємів рідкої сировини / 1 об'єм каталізатора*год.

Сірчисті сполуки гідруються значно швидше олефінів. При доведенні ступеня насиченості вихідної сировини до бромного числа, рівного 5 - 10, сірчисті сполуки і олефіни в основному видалялись при незначному ступені гідрогенізації ароматичних вуглеводнів. В результаті одержували достатньо стабільний з низьким вмістом сірки основний компонент авіаційного бензину, октанове число якого покращувалось після додавання тетраетилсвинцю.

Процес гідрогенізації можна також застосовувати з метою видалення сірки і підвищення стабільності крекінг - продуктів, які використовуються для одержання автомобільних бензинів. На відміну від авіаційних бензинів оцінка октанових чисел автомобільних бензинів звичайно проводиться у м'якіших умовах і з меншим додаванням тетраетилсвинцю. В таких умовах бажане збереження більшої частини олефінових вуглеводнів в продукті гідрування. Тому необхідно ретельно контролювати ступень видалення сірки і насиченості олефінів, щоб уникнути непотрібних втрат в октановому числі. З мал. 3 помітні деякі збільшення октанового числа для низькокиплячих фракцій при зниженні вмісту сірки до 0,2 % ваг. Проте подальша гідрогенізація веде до зниження октанового числа навіть при додаванні тетраетилсвинцю.

Фракція

Межі кипіння

Сірка, % ваг.

Октанове число (ASTM)

Без ТЕС

1 куб. см ТЕС

L

43,33 - 98,89

0,41

73,8

76,5

Ll

82,22 - 143,33

0,66

70,4

73,3

Lll

143,33 - 187,78

1,04

66,6

69,1

На характер зміни октанового числа гідрогенізату сильний вплив справляє будова олефіну. Наступні дані для індивідуальних сполук показують, що олефіни з розгалудженішою структурою вигідніші при гідрогенізації, ніж менш розгалуджені олефіни.

Октанове число

Дослідницький метод CFR

Моторний метод ASTM

Без ТЕС

З 3 куб. см ТЕС

Без ТЕС

З 3 куб. см ТЕС

Октен - 1

28,7

63,5

34,7

57,7

Н-Октан

<0

24,8

<0

28,1

2-метилгептен-1

70,2

87,9

66,3

79,6

2-метилгептан

21,7

57,6

23,8

61,4

2,3-диметилгексен-1

96,3

--

83,6

88,1

2,3-диметилгексан

71,3

91,7

78,9

93,7

2,4,4-триметилпентен-1

+0,6*

11*

86,5

88,8

2,2,4-триметилпентан

100

+3*

100

+3*

* Ізооктан (2,2,4 - триметилпентан) + зазначений об'єм ТЕС

Похожие статьи




Каталітичний крекінг - Алкани як паливо

Предыдущая | Следующая