Энергия солнца - Альтернативная энергетика и возможности ее развития в России

Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Полное количество солнечной энергии, поступающей на поверхность Земли за неделю, превышает энергию всех мировых запасов нефти, газа, угля и урана. И в России наибольший теоретический потенциал, более 2000 млрд. тонн условного топлива (т. у.т.), имеет солнечная энергия. Несмотря на такой большой потенциал в новой энергетической программе России вклад возобновляемых источников энергии на 2005 г определен в очень малом объеме - 17-21 млн. т у. т. Существует широко распространенное мнение, что солнечная энергия является экзотической и ее практическое использование-дело отдаленного будущего (после 2020г). В данной работе мы покажем, что это не так и что солнечная энергия является серьезной альтернативой традиционной энергетике уже в настоящее время.

Известно, что каждый год в мире потребляется столько нефти, сколько ее образуется в природных условиях за 2 млн. лет. Гигантские темпы потребления не возобновляемых энергоресурсов по относительно низкой цене, которые не отражают реальные совокупные затраты общества, по существу означают жизнь в займы, кредиты у будущих поколений, которым не будет доступна энергия по такой низкой цене. Другая составляющая стоимости энергии, которая распределяется на все общество и не включается в тарифы за энергию, связана с загрязнением окружающей среды энергетическими установками. Выбросы тепловых электростанций состоят, в основном, из углекислого газа, который ответственен за тепличный эффект и изменение климата и, например, приводит к засухе в районах производства зерна и картофеля. Другие выбросы включают окислы серы и азота, которые в атмосфере превращаются в серную и азотную кислоты и возвращаются на землю со снегом или в виде кислотных дождей. Повышенная кислотность воды привод к снижению плодородия почвы, уменьшению рыбных запасов и засыханию лесов, повреждению строительных конструкций и зданий. Токсичные тяжелые металлы, такие как кадмий, ртуть, свинец, могут растворяться кислотами и попадать в питьевую воду и сельскохозяйственные продукты. Существует большая неопределенность в определении реальной стоимости электроэнергии, получаемой от атомных электростанций. Можно утверждать, что реальные цены в атомной энергетике будут определены после того, как будут решены вопросы безопасности АЭС и ядерных технологий по получению топлива и захоронения отходов и разработаны принципы обращения с оборудованием, зданиями и сооружениями АЭС, выводимыми из эксплуатации через тридцать лет работы, и эти цены будут выше существующих. Наши и зарубежные оценки прямых социальных затрат, связанных с вредным воздействием электростанций, включая болезни и снижение продолжительности жизни людей, оплату медицинского обслуживания, потери на производстве, снижение урожая, восстановление лесов и ремонт зданий в результате загрязнения воздуха, воды и почвы дают величину добавляющую около 75% мировых цен на топливо и энергию. По существу это затраты всего общества - экологический налог, который платят граждане за несовершенство энергетических установок, и этот налог должен быть включен в стоимость энергии для формирования государственного фонда энергосбережения и создание новых экологически чистых технологий в энергетике. Если учесть эти скрытые сейчас затраты в тарифах на энергию, то большинство новых технологий возобновляемой энергетики становится конкурентноспособными с существующими технологиями. Одновременно появится источник финансирования новых проектов по экологически чистой энергетике. Именно такой "экологический" налог в размере от 10 до 30% от стоимости нефти введен в Швеции, Финляндии, Нидерландах и, возможно, в 1993 г. он будет введен в Германии и странах ЕЭС. Геотермальные, ветровые и гидроэлектростанции имеют конкурентноспособные экономические характеристики при любом уровне мощности, который ограничен только наличием соответствующих энергоресурсов. Геотермальная энергетика при строгом рассмотрении не является возобновляемой, ее методы являются традиционными и в данной работе не рассматриваются. Потенциал ветровой и гидроэнергии составляют соответственно 0,02% и 0,07% от солнечной энергии и позволяют обеспечивать энергией локальных и региональных потребителей при суммарной мощности до нескольких сотен и тысяч мегаватт.

Энергосберегающие технологии для солнечного дома являются наиболее приемлемыми по экономической эффективности их использования. Их применение позволит снизить энергопотребление в домах до 60%. В качестве примера успешного применения этих технологий можно отметить проект "2000 солнечных крыш" в Германии. В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов. В Германии разработана новая технология прозрачной теплоизоляции зданий и солнечных коллекторов с температурой 90-50 гр. С. При приближении к мировым ценам становятся экономически приемлемыми технологии получения газа и моторного топлива из биомассы. Например, опыты показывают, фермер, имеющий посевы рапса и рапсовое масло, может быть независимым от поставок моторного топлива. В регионах, богатых торфом и древесиной и имеющих дефицит моторного топлива, технологии газификации, получение этанола и метанола позволят использовать газ и синтетическое топливо в дизельных электрогенераторах и автомобилях. Отсутствие экономически приемлемых технологий аккумулирования сдерживает широкое использование водорода и электрического транспорта.

Однако поисковые работы в этой области ведутся весьма интенсивно и не исключено, что в ближайшие годы будут предложены новые решения, как это произошло в системах преобразования и передачи электрической энергии. В 1992г. в ВИЭСХе (Всесоюзный институт электрификации сельского хозяйства) совместно с ВЭИ ( Всесоюзный энергетический институт) (автор Авраменко С. В.) разработан и испытан образец такой системы мощностью 1,5 кВт, в 1993г. мы надеемся увеличить ее мощность до 100 кВт. Помимо снижения числа проводов до одного ЛЭП практически не имеет джоулевых потерь и потерь на корону и авторы рассчитывают, что указанные свойства сохранятся при увеличении уровня передаваемой мощности до 10 ГВт и более. Солнечные электростанции могут быть использованы как для решения локальных энергетических задач, так и глобальных проблем энергетики.

При КПД солнечной электростанции (СЭС) 12% все современное потребление электроэнергии в России может быть получено от СЭС активной площадью около 4000 кв. м, что составляет 0.024% территории. Наиболее практическое применение в мире получили гибридные солнечно-топливные электростанции с параметрами: КПД 13,9%, температура пара 371 гр. С, давление пара 100 бар, стоимость вырабатываемой электроэнергии 0,08-0,12 долл/кВт. ч, суммарная мощность в США 400 МВт при стоимости 3 долл/Вт. СЭС работает в пиковом режиме при отпускной цене за 1 кВт. ч электроэнергии в энергосистеме: с 8 до 12 час.-0,066 долл. и с 12 до 18 час.- 0,353 долл.. КПД СЭС может быть увеличен до 23% - среднего КПД системных электростанций, а стоимость электроэнергии снижена за счет комбинированной выработки электрической энергии и тепла. Основным технологическим достижением этого проекта является создание Германской фирмой Flachglass Solartechnik GMBH технологии производства стеклянного параболоцилиндрического концентратора длиной 100 м с апертурой 5,76 м, оптическим КПД 81% и ресурсом работы 30 лет. При наличии такой технологии зеркал в России целесообразно массовое производство СЭС в южных районах, где имеются газопроводы или небольшие месторождения газа и прямая солнечная радиация превышает 50% от суммарной.

Принципиально новые типы солнечных концентратов, использующие технологию голографии, предложены ВИЭСХом. Его главные характеристики-сочетание положительных качеств солнечных электростанций с центральным приемником модульного типа и возможность использования в качестве приемника как традиционных паронагревателей, так и солнечных элементов на основе кремния.

Одной из наиболее перспективных технологий солнечной энергетики является создание фотоэлектрических станций с солнечными элементами на основе кремния, которые преобразуют в электрическую энергию прямую и рассеянную составляющие солнечной радиации с КПД 12-15%. Лабораторные образцы имеют КПД 23%. Мировое производство солнечных элементов превышает 50 МВт в год и увеличивается ежегодно на 30%. Современный уровень производства солнечных элементов соответствует начальной фазе их использования для освещения, подъема воды, телекоммуникационных станций, питания бытовых приборов в отдельных районах и в транспортных средствах. Стоимость солнечных элементов составляет 2,5-3 долл/Вт при стоимости электроэнергии 0,25-0,56 долл/кВт. ч. Солнечные энергосистемы заменяют керосиновые лампы, свечи, сухие элементы и аккумуляторы, а при значительном удалении от энергосистемы и малой мощности нагрузки - дизельные электрогенераторы и линии электропередач.

Похожие статьи




Энергия солнца - Альтернативная энергетика и возможности ее развития в России

Предыдущая | Следующая