О характере революции в математике, Основные точки зрения на революцию в математике - Концепция научных революций Т. Куна

Интерес к проблеме анализа тех коренных, качественных изменений в развитии научного знания, которые принято называть революциями в науке, возник после появления известной книги Т. Куна "Структура научных революций", опубликованной в русском переводе в 1975 г. В ходе широкой дискуссии как у нас, так и на Западе закономерно возник и вопрос о революциях в математике. Первая попытка критически рассмотреть идеи Куна применительно к развитию математического знания была предпринята в публикации Г. Мартенсона в международном журнале "История математики". В этой, а также в других публикациях высказывались самые крайние точки зрения на революцию в математике, начиная от полного ее отрицания и кончая частичным признанием.

Основные точки зрения на революцию в математике

Когда заходит речь о характере изменений, происходящих в развитии математического познания, в первую очередь обращают внимание не на качественные, а на количественные - постепенные, медленные - изменения. Тем самым научный прогресс сводится к постепенному накоплению все новых и новых знаний. Такую концепцию развития науки принято называть кумулятивистской. В применении к математике это означает, что ее развитие определяется только чисто количественным ростом нового знания (открытием новых понятий, доказательством новых теорем и т. д.); при этом предполагается, что старые понятия и теории не подвергаются пересмотру. Кун в своей работе выступает с решительной критикой такой точки зрения кумулятивного развития научного знания.

Однако, несмотря на свою ограниченность, кумулятивистская концепция нередко еще встречается в математике. Объяснить это можно тем, что в силу самой природы математического познания ученый не обращается непосредственно ни к наблюдениям, ни к эксперименту. Математика развивается на абстрактно-логической основе. Совершенно иначе обстоит дело в естествознании, где иногда эксперимент полностью опровергает теорию и требует пересмотра старого научного знания или даже отказа от него. Именно на этом основываются попытки отрицания всяких революционных изменений в математике.

Отметим прежде всего ошибочность того представления, что революция есть чистое уничтожение, разрушение и отбрасывание старого. Именно из этого понимания революции исходит американский историк математики М. Кроу, утверждая, что "необходимой характеристикой революции является то, что некоторый объект (будь то король, конституция или научная теория) должен быть отвергнут и безвозвратно отброшен". Основываясь на таком определении, он заявляет в своем десятом законе, что революции никогда не встречаются в математике. На самом деле, революция в математике не означает отбрасывания старых объектов, а приводит к изменению их смыслового значения и объема (области применимости). Так, например, Фурье в своей "Аналитической теории тепла" писал, что математика "сохраняет каждый принцип, который она однажды приобрела". Другой выдающийся математик Г, Ганкель утверждал, что "в большинстве наук одно поколение разрушает то, что построило другое... Только в математике каждое поколение строит новую историю на старой структуре" (цит. по [3]).

Если бы развитие науки состояло в простом отбрасывании старых теорий, как был бы возможен в ней прогресс? Действительно, даже в естествознании, возникновение теории относительности и квантовой механики не привело к полному отказу от классической механики Галилея-Ньютона, а только точно указало границы ее применимости. В математике преемственность между старым и новым знанием выражена значительно сильнее, к тому же, будучи абстрактными по своей природе, теории не могут быть опровергнуты экспериментальной верификацией. Обратимся к примеру, который приводит Кроу - открытию неевклидовых геометрий. По его мнению, это не была революция в геометрии, поскольку Евклид не был отвергнут, а царствует вместе с другими, неевклидовыми геометриями.

Некоторые ученые считают, что революции возможны только в прикладной математике - в области приложения математических методов в естествознании, технике, экономике и т. п. Теории "чистой" математики могут оказаться неэффективными для решения прикладных проблем и поэтому могут быть забыты или целиком отброшены. Но, с другой стороны, коренные изменения теорий и методов приложения математики являются в конечном счете результатом изменений, происшедших в теоретической математике. Между теоретической и прикладной математикой существует тесная взаимосвязь и взаимодействие. Поэтому, если мы допускаем революцию в прикладной математике, мы должны признать ее существование и в "чисто" теоретической математике.

Сторонники еще одной точки зрения на революции в математике связывают их с процессами, происходящими вне рамок самой математики или по крайней мере относящимися к форме выражения мысли (символика и исчисления), технике математических вычислений и преобразований (формулы и алгоритмы) или же к методологии и философии математики. Именно такого рода революции в математике частично признает Кроу. Изменения в символизме или философском обосновании математики, безусловно, чаще бросаются в глаза, чем изменения в самой математике, но происходят они в "надстройке" математики и вторичны по своей сути. Наиболее заметно это в методологии и философии математики, когда открытие принципиально новых понятий, теорий и методов приводит к пересмотру учеными своих методологических и философских взглядов. Яркий пример тому возникновение канторовской теории множеств и появление парадоксов, которые привели к новому стилю мышления в математике, принципах обоснования ее теорий, к новым определениям ее исходных понятий.

Многие взгляды, таким образом, основываются на предположении, что никакие качественные изменения в процессе развития математики не происходят. Вся эволюция в математике будет сводиться к простому накоплению и росту знания: ничего в ней не переоценивается, а сохраняется в нетронутом виде. На первый взгляд создается впечатление, что в математике прогресс осуществляется чисто кумулятивным способом. Против таких кумулятивистских представлений о развитии научного знания и выступает Томас Кун. На самом деле количественные, постепенные изменения (по Куну, период "нормальной" науки) в математике, так же как и в других науках, в конце концов сопровождаются изменениями коренными, качественными - научной революцией.

Похожие статьи




О характере революции в математике, Основные точки зрения на революцию в математике - Концепция научных революций Т. Куна

Предыдущая | Следующая