Определение ошибок выборочного наблюдения - Особенность использования выборочного наблюдения

При выборочном наблюдении должна быть обеспечена случайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.

К Собственно-случайной выборке Относится отбор единиц из всей генеральной совокупности (без предварительного расчленения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного способа, например, с помощью таблицы случайных чисел. Случайный отбор - это отбор не беспорядочный. Принцип случайности предполагает, что на включение или исключение объекта из выборки не может повлиять какой-либо фактор, кроме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущенных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки Есть отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности. Так, при 5 %-й выборке из партии деталей в 1000 ед. объем выборки составляет 50 ед., а при 10 %-й выборке - 100 ед. и т. д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате - выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор "в чистом виде" применяется в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину количественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием изучаемого признака).

Выборочная доля или частость, определяется отношением числа единиц, обладающих изучаемым признаком, к общему числу единиц выборочной совокупности:

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки Или, иначе говоря, ошибка репрезентативности представляет собой разность соответствующих выборочных и генеральных характеристик.

Ошибка выборки свойственна только выборочным наблюдениям. Чем больше значение этой ошибки, тем в большей степени выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок - среднюю ошибку выборки.

При соблюдении принципа случайного отбора средняя ошибка выборки определяется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, все более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки также зависит от степени варьирования изучаемого признака. Степень варьирования, как известно, характеризуется дисперсией или - для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка выборки, и наоборот. При нулевой дисперсии (признак не варьирует) средняя ошибка выборки равна нулю, т. е. любая единица генеральной совокупности будет совершенно точно характеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степени варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики неизвестны.

Поскольку практически дисперсия признака в генеральной совокупности точно неизвестна, на практике пользуются значением дисперсии ,Рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Однако дисперсия выборочной совокупности не равна дисперсии генеральной совокупности, и следовательно, средние ошибки выборки, будут приближенными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

N/(n-1),

Где - величина, близкая к единице, то можно принять, что , И только в случаях малой выборки (когда объем выборки не превышает 30) необходимо учитывать коэффициент и исчислять среднюю ошибку малой выборки по формуле:

М. в = ,

Где м. в - средняя ошибка малой выборки;

- общее число единиц.

При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подкоренное выражение умножить на , Поскольку в процессе бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной выборки расчетные формулы средней ошибки выборки примут вид:

,

Для средней количественного признака;

,

Для доли (альтернативного признака);

Так как всегда меньше, то дополнительный множитель всегда будет меньше единицы. Отсюда следует, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. В то же время при сравнительно небольшом проценте выборки этот множитель близок к единице (например, при 5 % - й выборке он равен 0,95; при 2 % - й - 0,98 и т. д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (1.5) и (1.6) без указанного множителя, хотя выборку и организуют как бесповторную. Это имеет место в тех случаях, когда число единиц генеральной совокупности неизвестно или безгранично, или когда очень мало по сравнению с, и по существу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по нейтральному признаку на равные интервалы (группы), производится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематической ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокупности предварительно располагают (обычно в списке) в определенном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо показателя, не связанного с изучаемым свойством, и т. д.), после чего отбирают заданное число единиц механически, через определенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2 % - й выборке отбирается и проверяется каждая 50 - я единица (1 : 0,02), при 5 % - й выборке - каждая 20 - я единица (1 : 0,05), например, сходящая со станка деталь. экономический статистический комбинированный выборка

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному.

Для отбора единиц из неоднородной совокупности применяется, так называемая типическая выборка, Которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдельных отраслях экономики, производительности труда рабочих предприятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки.

При определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку типической выборки Находят по формулам:

,

,

,

,

Где - Средняя из внутригрупповых дисперсий по выборочной совокупности;

- средняя из дисперсий доли по выборочной совокупности.

Серийная выборка Предполагает случайный отбор из генеральной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюдению все без исключения единицы

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т п. Поэтому при контроле качества упакованного товара рациональнее проверить несколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Среднюю ошибку выборки для средней количественного признака при серийном отборе находят по формулам:

,

,

Где - Число отобранных серий,

- общее число серий.

Средняя ошибка выборки для доли (альтернативного признака) при серийном отборе:

;

,

,

Где - доля признака в - й серии;

- общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмотренных ранее способов отбора применяется их комбинация (комбинированный отбор).

Конечной целью выборочного наблюдения является характеристика генеральной совокупности на основе выборочных результатов. Выборочные средние и относительные величины распространяют на генеральную совокупность с учетом предела их возможной ошибки.

В каждой конкретной выборке расхождение между выборочной средней и генеральной, т. е. Может быть меньше средней ошибки выборки, равно ей или больше ее. Причем каждое из этих расхождений имеет различную вероятность (объективную возможность появления события). Поэтому фактические расхождения между выборочной средней и генеральной Можно рассматривать как некую предельную ошибку, связанную со средней ошибкой и гарантируемую с определенной вероятностью .

Предельную ошибку выборки для средней () при повторном отборе можно рассчитать по формуле:

= ,

Где - нормированное отклонение - "коэффициент доверия", зависящий от вероятности, с которой гарантируется предельная ошибка выборки.

Аналогичным образом может быть записана формула предельной ошибки выборки для доли () при повторном отборе:

,

Где - предельная ошибка выборки для доли;

- нормированное отклонение.

Формула предельной ошибки выборки вытекает из основных положений теории выборочного метода, сформулированных в ряде теорем теории вероятностей, отражающих закон больших чисел.

На основании теоремы П. Л. Чебышева (с уточнениями А. М. Ляпунова) с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной генеральной дисперсии выборочные обобщающие показатели (средняя, доля) будут сколь угодно мало отличаться от соответствующих генеральных показателей.

Таким образом, величина предельной ошибки выборки может быть установлена с определенной вероятностью.

Из этой теоремы следует, что при достаточно большом числе независимых наблюдений, распределение выборочных средних (а следовательно, и их отклонений от генеральной средней) приближенно нормально. Распределение выборочных средних будет являться нормальным (или приближаться к нему по мере увеличения объема выборки) даже в случаях, когда генеральная совокупность имеет иную форму распределения.

Значения функции при различных значениях как коэффициента кратности средней ошибки выборки, определяются на основе специально составленных таблиц.

Предельная ошибка выборки отвечает на вопрос о точности выборки с определенной вероятностью, значение которой определяется коэффициентом (в практических расчетах, как правило, заданная вероятность не должна быть менее 0,95). Так, при = 1 предельная ошибка составит, следовательно, с вероятностью 0,683 можно утверждать, что разность между выборочными и генеральными показателями не превысит одной средней ошибки выборки. Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы. При = 2 с вероятностью 0,954 она не выйдет за пределы 2, при = 3 с вероятностью 0,997 - за пределы 3 и т. д.

Как видно из приведенных выше значений функции , вероятность появления ошибки, равной или большей утроенной средней ошибки выборки, т. е. , крайне мала и равна 0,003. Такие маловероятные события считаются практически невозможными, а потому величину можно принять за предел возможной ошибки выборки.

Выборочное наблюдение проводится в целях распространения выводов, полученных по данным выборки, на генеральную совокупность. Одной из основных задач является оценка по данным выборки исследуемых характеристик (параметров) генеральной совокупности.

Наряду с абсолютным значением предельной ошибки выборки рассчитывается и предельная относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

,

,

Определение необходимого объема выборки. При проектировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки очень важно правильно определить численность (объем) выборочной совокупности, которая с определенной вероятностью обеспечит заданную точность результатов наблюдения. Формулы для определения необходимой численности выборки легко получить непосредственно из формул ошибок выборки.

Так, из формул предельной ошибки выборки для повторного отбора нетрудно (предварительно возведя в квадрат обе части равенства) выразить необходимую численность выборки:

,

,

Эти формулы показывают, что с увеличением предполагаемой ошибки выборки значительно уменьшается необходимый объем выборки.

Для расчета объема выборки нужно знать дисперсию. Она может быть заимствована из проводимых ранее обследований данной или аналогичной совокупности, а если таковых нет, тогда для определения дисперсии надо провести специальное выборочное обследование небольшого объема.

Похожие статьи




Определение ошибок выборочного наблюдения - Особенность использования выборочного наблюдения

Предыдущая | Следующая